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Here is a discussion of the concept of m-dimensional smooth submanifold of Rn. It will be super-
seded by the general concept of submanifold of an abstract manifold, but right now I want to get
some ideas across by looking at this concrete case.

Apart from the Chain Rule, the main tool here is the Inverse Function Theorem.

1 Curves in the plane

Let us start with the case m = 1, n = 2. I will give several definitions of smooth curve in the plane
and show that they are all logically equivalent.

Let C ⊂ R2 be a subset and let p = (a, b) ∈ C be a point. The following four conditions are
equivalent, and if they hold for every p ∈ C we say that C is a smooth curve in R2.

(1) (Locally C is related to a line by a diffeomorphism of the ambient space.) For some open set
U ⊂ R2 containing p there exists a diffeomorphism Φ : U → Φ(U) from U to some open subset of
R2 such that Φ(C ∩ U) = (R× 0) ∩ Φ(U) and Φ(p) = (0, 0).

(2) (Locally C can be given a regular parametrization.) For some open subset V of R there is a
smooth map φ : V → R2 such that φ(V ) is a neighborhood of p in C, φ(0) = p, and the derivative
(or “velocity vector”) φ′0) ∈ R2 is not zero.

(3) (Locally C is a graph.) For some open set U ⊂ R2 containing p, either the set U ∩ C can be
described as the set of all pairs (x, y) with y = f(x) and x ∈ J for some smooth f defined in an
open interval J ∈ R, or it can be described as the set of all pairs (x, y) with x = g(y) and y ∈ J
for some open interval J ∈ R.
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(4) (Locally C is a regular level set.) For some open set U ⊂ R2 containing p there exists a smooth
map ψ : U → R such that ψ−1(0) = U ∩ C and Dpψ is not zero.

We outline the proof:

(1) implies (2) directly. In fact, define φ by φ(u) = Φ−1(u, 0) (the domain V being the set of all
u ∈ R such that (u, 0) ∈ Φ(U)).

(2) implies (3) using the Inverse Function Theorem in one dimension. To see this, write φ(u) =
(φ1(u), φ2(u)). Either φ′1(0) or φ′2(0) is nonzero, say the former. Restricting to a smaller interval if
necessary, we can assume that φ1 has an inverse. Let f be φ2 ◦ φ−11 . Or if φ′2(0) 6= 0 then locally
φ2 has an inverse and we let g be φ1 ◦ φ−12 .

(3) easily implies (4). In fact, if C is described locally by y = f(x) then let ψ(x, y) = y − f(x). If
it is described by x = g(y) then let ψ(x, y) = x− g(y).

(4) implies (1) using the Inverse Function Theorem in two dimensions. In fact, one of the partial
derivatives of ψ at P is nonzero, say ∂ψ

∂y . Define Φ : U → R2 by Φ(x, y) = (x − a, ψ(x, y)). The
derivative of Φ at P is an invertible two by two matrix, so after restricting to a smaller open
neighborhood of a the map Φ becomes a diffeomorphism onto its image.

2 The general case

Now let 0 ≤ m ≤ n. Let M ⊂ Rn be a subset and let p ∈ M be a point. The following
four conditions are equivalent, and if they hold for every p ∈ M we say that M is a smooth
m-dimensional manifold in Rn.

(1) For some open set U ⊂ Rn containing p there exists a diffeomorphism Φ : U → Φ(U) from U
to some open subset of Rn such that Φ(M ∩ U) = (Rm × 0) ∩ Φ(U) and Φ(p) = 0.

(2) (Regular parametrization) For some open neighborhood V of 0 in Rm there is a smooth map
φ : V → Rn such that φ(V ) is a neighborhood of p in M , φ(0) = p, and the derivative D0φ (or
equivalently the corresponding n × m matrix of partial derivatives) has rank m (the maximum
possible).

(3) (Graph) For some open set U ⊂ Rn containing p, the set U ∩M is related by some permutation
of the n standard coordinates in Rn to the set of all pairs (x, y) ∈ Rm × Rn−m with y = f(x), for
some smooth map f : W 7→ Rn−m whose domain W is an open set in Rm.

(4) (Regular level set) For some open set U ⊂ Rn containing p there exists a smooth map
ψ : U → Rn−m such that ψ−1(0) = U ∩M and such that the derivative Dpψ (or equivalently the
corresponding (n−m)× n matrix of partial derivatives) has rank n−m (the maximum possible).

The arguments are essentially the same as in the case m = 1, n = 2. Here are details for the two
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most interesting steps.

(2) implies (3) using the Inverse Function Theorem in m dimensions. After some permutation of
coordinates we can assume that the first m rows of the matrix of D0φ constitute an invertible
m×m matrix. Write φ(u) = (φ1(u), φ2(u)) ∈ Rm × Rn−m, so that D0φ1 is invertible. Restricting
to a smaller domain if necessary, we can assume that φ1 has an inverse. Let f be φ2 ◦ φ−11 .

(4) implies (1) using the Inverse Function Theorem in n dimensions. After composing with a
permutation we can assume that the last n − m columns of the matrix for Dpψ constitute an
invertible (n −m) × (n −m) matrix. Define Φ : U → Rm × Rn−m by Φ(x, y) = (x − a, ψ(x, y))
where p = (a, b). The derivative of Φ at p is an invertible n × n matrix, so after restricting to a
smaller open neighborhood Φ becomes a diffeomorphism to its image.

Remark: “(4) implies (3)” is a version of the Implicit Function Theorem.

3 Tangent Spaces

To a smooth m-manifold M ⊂ Rn and a point p ∈ M is associated an m-dimensional vector
subspace of Rn, the tangent space TpM . Let us describe it using (1) above.

If Φ is a diffeomorphism as in (1) then we let TpM be (DpΦ)−1(Rm × 0) = (D0Φ
−1)(Rm × 0). To

see that this is well-defined, first note that it does not change (because DpΦ does not change) if
Φ is replaced by its restriction to a smaller open neighborhood of P . Then suppose that Φ1 and
Φ2 are two diffeomorphims as in (1) both having the same domain. Writing Φ2 = h ◦ Φ1, thus
Φ−11 = Φ−12 ◦ h, we have D0Φ

−1
1 = D0Φ

−1
2 ◦ D0h. Since the diffeomorphism h : Φ1(U) → Φ2(U)

preserves (a neighborhood of 0 in) Rm×0, the linear isomorphism D0h : Rn → Rn preserves Rm×0
and therefore

(D0Φ
−1
1 )(Rm × 0) = (D0Φ

−1
2 )((D0h)(Rm × 0)) = (D0Φ

−1
2 )(Rm × 0).

There are similar descriptions using (2), (3) or (4). We leave it as an exercise to show that given a
map φ as in (2), TpM is the image of D0φ : Rm → Rn, and that given a map ψ as in (4) TPM is
the kernel of Dpψ : Rn → Rn−m.
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