Spring 2015
 MA 2110, Introduction to Manifolds
 Supplement \#2
 Manifolds in \mathbb{R}^{m} and applications of the Inverse Function Theorem

January 29, 2015

Here is a discussion of the concept of m-dimensional smooth submanifold of \mathbb{R}^{n}. It will be superseded by the general concept of submanifold of an abstract manifold, but right now I want to get some ideas across by looking at this concrete case.

Apart from the Chain Rule, the main tool here is the Inverse Function Theorem.

1 Curves in the plane

Let us start with the case $m=1, n=2$. I will give several definitions of smooth curve in the plane and show that they are all logically equivalent.

Let $C \subset \mathbb{R}^{2}$ be a subset and let $p=(a, b) \in C$ be a point. The following four conditions are equivalent, and if they hold for every $p \in C$ we say that C is a smooth curve in \mathbb{R}^{2}.
(1) (Locally C is related to a line by a diffeomorphism of the ambient space.) For some open set $U \subset \mathbb{R}^{2}$ containing p there exists a diffeomorphism $\Phi: U \rightarrow \Phi(U)$ from U to some open subset of \mathbb{R}^{2} such that $\Phi(C \cap U)=(\mathbb{R} \times 0) \cap \Phi(U)$ and $\Phi(p)=(0,0)$.
(2) (Locally C can be given a regular parametrization.) For some open subset V of \mathbb{R} there is a smooth map $\phi: V \rightarrow \mathbb{R}^{2}$ such that $\phi(V)$ is a neighborhood of p in $C, \phi(0)=p$, and the derivative (or "velocity vector") $\phi^{\prime} 0$) $\in \mathbb{R}^{2}$ is not zero.
(3) (Locally C is a graph.) For some open set $U \subset \mathbb{R}^{2}$ containing p, either the set $U \cap C$ can be described as the set of all pairs (x, y) with $y=f(x)$ and $x \in J$ for some smooth f defined in an open interval $J \in \mathbb{R}$, or it can be described as the set of all pairs (x, y) with $x=g(y)$ and $y \in J$ for some open interval $J \in \mathbb{R}$.
(4) (Locally C is a regular level set.) For some open set $U \subset \mathbb{R}^{2}$ containing p there exists a smooth $\operatorname{map} \psi: U \rightarrow \mathbb{R}$ such that $\psi^{-1}(0)=U \cap C$ and $D_{p} \psi$ is not zero.

We outline the proof:
(1) implies (2) directly. In fact, define ϕ by $\phi(u)=\Phi^{-1}(u, 0)$ (the domain V being the set of all $u \in \mathbb{R}$ such that $(u, 0) \in \Phi(U))$.
(2) implies (3) using the Inverse Function Theorem in one dimension. To see this, write $\phi(u)=$ $\left(\phi_{1}(u), \phi_{2}(u)\right)$. Either $\phi_{1}^{\prime}(0)$ or $\phi_{2}^{\prime}(0)$ is nonzero, say the former. Restricting to a smaller interval if necessary, we can assume that ϕ_{1} has an inverse. Let f be $\phi_{2} \circ \phi_{1}^{-1}$. Or if $\phi_{2}^{\prime}(0) \neq 0$ then locally ϕ_{2} has an inverse and we let g be $\phi_{1} \circ \phi_{2}^{-1}$.
(3) easily implies (4). In fact, if C is described locally by $y=f(x)$ then let $\psi(x, y)=y-f(x)$. If it is described by $x=g(y)$ then let $\psi(x, y)=x-g(y)$.
(4) implies (1) using the Inverse Function Theorem in two dimensions. In fact, one of the partial derivatives of ψ at P is nonzero, say $\frac{\partial \psi}{\partial y}$. Define $\Phi: U \rightarrow \mathbb{R}^{2}$ by $\Phi(x, y)=(x-a, \psi(x, y))$. The derivative of Φ at P is an invertible two by two matrix, so after restricting to a smaller open neighborhood of a the map Φ becomes a diffeomorphism onto its image.

2 The general case

Now let $0 \leq m \leq n$. Let $M \subset \mathbb{R}^{n}$ be a subset and let $p \in M$ be a point. The following four conditions are equivalent, and if they hold for every $p \in M$ we say that M is a smooth m-dimensional manifold in \mathbb{R}^{n}.
(1) For some open set $U \subset \mathbb{R}^{n}$ containing p there exists a diffeomorphism $\Phi: U \rightarrow \Phi(U)$ from U to some open subset of \mathbb{R}^{n} such that $\Phi(M \cap U)=\left(\mathbb{R}^{m} \times 0\right) \cap \Phi(U)$ and $\Phi(p)=0$.
(2) (Regular parametrization) For some open neighborhood V of 0 in \mathbb{R}^{m} there is a smooth map $\phi: V \rightarrow \mathbb{R}^{n}$ such that $\phi(V)$ is a neighborhood of p in $M, \phi(0)=p$, and the derivative $D_{0} \phi$ (or equivalently the corresponding $n \times m$ matrix of partial derivatives) has rank m (the maximum possible).
(3) (Graph) For some open set $U \subset \mathbb{R}^{n}$ containing p, the set $U \cap M$ is related by some permutation of the n standard coordinates in \mathbb{R}^{n} to the set of all pairs $(x, y) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$ with $y=f(x)$, for some smooth map $f: W \mapsto \mathbb{R}^{n-m}$ whose domain W is an open set in \mathbb{R}^{m}.
(4) (Regular level set) For some open set $U \subset \mathbb{R}^{n}$ containing p there exists a smooth map $\psi: U \rightarrow \mathbb{R}^{n-m}$ such that $\psi^{-1}(0)=U \cap M$ and such that the derivative $D_{p} \psi$ (or equivalently the corresponding $(n-m) \times n$ matrix of partial derivatives) has rank $n-m$ (the maximum possible).

The arguments are essentially the same as in the case $m=1, n=2$. Here are details for the two
most interesting steps.
(2) implies (3) using the Inverse Function Theorem in m dimensions. After some permutation of coordinates we can assume that the first m rows of the matrix of $D_{0} \phi$ constitute an invertible $m \times m$ matrix. Write $\phi(u)=\left(\phi_{1}(u), \phi_{2}(u)\right) \in \mathbb{R}^{m} \times \mathbb{R}^{n-m}$, so that $D_{0} \phi_{1}$ is invertible. Restricting to a smaller domain if necessary, we can assume that ϕ_{1} has an inverse. Let f be $\phi_{2} \circ \phi_{1}^{-1}$.
(4) implies (1) using the Inverse Function Theorem in n dimensions. After composing with a permutation we can assume that the last $n-m$ columns of the matrix for $D_{p} \psi$ constitute an invertible $(n-m) \times(n-m)$ matrix. Define $\Phi: U \rightarrow \mathbb{R}^{m} \times \mathbb{R}^{n-m}$ by $\Phi(x, y)=(x-a, \psi(x, y))$ where $p=(a, b)$. The derivative of Φ at p is an invertible $n \times n$ matrix, so after restricting to a smaller open neighborhood Φ becomes a diffeomorphism to its image.

Remark: "(4) implies (3)" is a version of the Implicit Function Theorem.

3 Tangent Spaces

To a smooth m-manifold $M \subset \mathbb{R}^{n}$ and a point $p \in M$ is associated an m-dimensional vector subspace of \mathbb{R}^{n}, the tangent space $T_{p} M$. Let us describe it using (1) above.

If Φ is a diffeomorphism as in (1) then we let $T_{p} M$ be $\left(D_{p} \Phi\right)^{-1}\left(\mathbb{R}^{m} \times 0\right)=\left(D_{0} \Phi^{-1}\right)\left(\mathbb{R}^{m} \times 0\right)$. To see that this is well-defined, first note that it does not change (because $D_{p} \Phi$ does not change) if Φ is replaced by its restriction to a smaller open neighborhood of P. Then suppose that Φ_{1} and Φ_{2} are two diffeomorphims as in (1) both having the same domain. Writing $\Phi_{2}=h \circ \Phi_{1}$, thus $\Phi_{1}^{-1}=\Phi_{2}^{-1} \circ h$, we have $D_{0} \Phi_{1}^{-1}=D_{0} \Phi_{2}^{-1} \circ D_{0} h$. Since the diffeomorphism $h: \Phi_{1}(U) \rightarrow \Phi_{2}(U)$ preserves (a neighborhood of 0 in) $\mathbb{R}^{m} \times 0$, the linear isomorphism $D_{0} h: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ preserves $\mathbb{R}^{m} \times 0$ and therefore

$$
\left(D_{0} \Phi_{1}^{-1}\right)\left(\mathbb{R}^{m} \times 0\right)=\left(D_{0} \Phi_{2}^{-1}\right)\left(\left(D_{0} h\right)\left(\mathbb{R}^{m} \times 0\right)\right)=\left(D_{0} \Phi_{2}^{-1}\right)\left(\mathbb{R}^{m} \times 0\right)
$$

There are similar descriptions using (2), (3) or (4). We leave it as an exercise to show that given a $\operatorname{map} \phi$ as in (2), $T_{p} M$ is the image of $D_{0} \phi: \mathbb{R}^{m} \rightarrow \mathbb{R}^{n}$, and that given a map ψ as in (4) $T_{P} M$ is the kernel of $D_{p} \psi: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n-m}$.

