THE CLASSIFICATION OF COVERING SPACES

Let X be a space, let x_0 be a point of X, and let G be the fundamental group $\pi_1(X, x_0)$. I will define a functor

$$F : Cov_X \to Set$$

where Cov_X is the category of covering spaces $(E, p : E \to X)$ of X (a full subcategory of the comma category $Top \downarrow X$ of spaces over X) and $SetG$ is the category of right G-sets.

We will frequently use this pair of lifting lemmas, which apply to all covering spaces $p : E \to X$.

Lemma 1 (path lifting) If $\alpha : I \to X$ is continuous and $e \in E$ is given, with $p(e) = \alpha(0)$, then there exists a unique $\tilde{\alpha} : I \to E$ such that $p \circ \tilde{\alpha} = \alpha$ and $\tilde{\alpha}(0) = e$.

Lemma 2 (homotopy lifting for paths) If $H : I \times I \to X$ is continuous and $e \in E$ is given, with $p(e) = H(0, 0)$, then there exists a unique $\tilde{H} : I \times I \to E$ such that $p \circ \tilde{H} = H$ and $\tilde{H}(0, 0) = e$.

For each point $x \in X$ the set $p^{-1}(x) \subset E$ is called the fiber of p over x.

These lifting lemmas lead to the following construction: Given a path α from x to x' in X, we get a map of sets $\alpha_* : p^{-1}(x) \to p^{-1}(x')$ by letting $\alpha_*(e) = \hat{\alpha}(1)$ where $\hat{\alpha}$ is chosen so that $\hat{\alpha}(0) = e$. Call this map transport along the path α. We see that $(\alpha \beta)_*$ is the composition of α_* and β_* (actually in the other order, because of conventions about multiplying paths and composing mappings). So write the operation on the right: α_* takes e to ea_α. Then

$$(e\alpha)_* \beta_* = e(\alpha \beta)_*$$

The second lemma insures that α_* depends only on the homotopy class (with endpoints fixed) of α, so that if $a = [\alpha]$ we can write $e \mapsto ea$ instead of $e \mapsto ea_\alpha$.

Here α was a path, not necessarily a loop. If we specialize to the case where α is a loop based at x_0, then a is an element of $G = \pi_1(X, x_0)$ and the transport construction becomes a right action of G on the fiber $p^{-1}(x_0)$.

Now we define the functor F.

On objects, let $F(E, p)$ be the G-set $p^{-1}(x_0)$ just described.

On morphisms, if $f : (E, p : E \to X) \to (E', p' : E' \to X)$ is a map of covering spaces, first observe that f takes the set $p^{-1}(x_0)$ into the set $p'^{-1}(x_0)$ (because $p' \circ f = p$) and then observe that this map is a G-map: $f(ea) = f(e)a$. This is so because a representative loop α for a has a lifting $\tilde{\alpha}$ to E that starts at e and ends at ea, whence it also has a lifting $f \circ \tilde{\alpha}$ to E' that starts at $f(e)$ and ends at $f(ea)$. Let $F(f)$ be that G-map.

Clearly F is a functor: it takes compositions $(E, p) \to (E', p') \to (E'', p'')$ to compositions $p^{-1}(x_0) \to p'^{-1}(x_0) \to p''^{-1}(x_0)$ and identity maps $(E, p) \to (E, p)$ to identity maps.

HYPOTHESIS 1: X is path-connected.
With this hypothesis, we now show that the functor F is faithful. Given two maps f and g from (E,p) to (E',p'), and assuming that $F(f) = F(g)$, we must show that $f = g$. In other words, assuming that $f(e) = g(e)$ for every $e \in E$ such that $p(e) = x_0$, we must show that $f(e) = g(e)$ for every $e \in E$.

Take any $e \in E$. Choose a path α in X from $p(e)$ to x_0. Let $\tilde{\alpha}$ be the lifting to E with $\tilde{\alpha}(0) = e$. The reverses of both $f \circ \tilde{\alpha}$ and $g \circ \tilde{\alpha}$ are liftings of the reverse of α to E', and they both start at $f(\tilde{\alpha}(1)) = g(\tilde{\alpha}(1))$. Therefore (by the uniqueness in Lemma 1) they are equal. They end at $f(e)$ and $g(e)$ respectively, so $f(e) = g(e)$.

We can express this argument a little differently, more formally, by using the observation that the equation $f(e)a = f(ea)$ is valid for path classes, not just loop classes. Thus the value of f at any $e \in E$ is determined by the values of f in the fiber over x_0 because, choosing a path class a from $p(e)$ to x_0, we have $f(e) = f(ea)a^{-1}$ where $ea \in p^{-1}(x_0)$.

HYPOTHESIS 2: X is locally path-connected.

(By definition, this means that every point in X has arbitrarily small path-connected neighborhoods.)

With this hypothesis we will prove that F is fully faithful. Again let (E,p) and (E',p') be covering spaces of X. We have to show that every G-map f_0 from $p^{-1}(x_0)$ to $p'^{-1}(x_0)$ is $F(f)$ for some map $f : E \to E'$ of covering spaces.

We take our cue from the proof of faithfulness. Define a map of sets $f : E \to E'$ by $f(e) = (f_0(ea))a^{-1}$, where a is any path class from $p(e)$ to x_0 in X. This is well-defined because f_0 has been assumed to be a G-map: If b is a different choice of path class from $p(e)$ to x_0 in X, then $c = b^{-1}a$ is an element of G and we have $a = bc$,

$$f_0(ea)a^{-1} = f_0(ebc)a^{-1} = f_0(eb)ca^{-1} = f_0(eb)b^{-1}$$

Certainly $p'(f(e)) = p(e)$. Certainly $f(e) = f_0(p)$ when the latter is defined, because then a can be chosen to be the class of the constant path at x_0. Thus, if we can show that f is continuous, it will be a morphism of Cover_X such that $F(f) = f_0$ as desired.

To prove the continuity, we use the local path-connectedness of X.

Note that f is compatible with transport along all paths in X: If b is the class of a path from x_1 to x_2 then, choosing any a_1 from x_1 to x_0 and defining a_2 from x_2 to x_0 by $a_2 = b^{-1}a_1$, we have

$$f(eb) = f_0(eba_2)a_2^{-1} = f_0(ea_1)a_2^{-1} = f(e)a_1a_2^{-1} = f(e)b$$

To prove the continuity at a given $e \in E$, choose a neighborhood N of $p(e)$ in X such that it is evenly covered by both p and p'. Then $p^{-1}(N)$ is homeomorphic, by a homeomorphism that respects the projections to N, with the product $N \times S$ of N with a discrete space S, and similarly $p'^{-1}(N)$ is $N \times S'$. The statement to be proved, that f is continuous at e, means that at a certain point in $N \times S$ a certain map $N \times S \to N \times S'$ is continuous. Write this map as $(x,s) \mapsto (a(x,s),b(x,s))$.

2
Clearly \(a(x, s) = x \), so that the map \(a \) is continuous. Since any path in \(N \times S \) is constant in the \(S \) factor, the compatibility with transport means that for every \(s \in S \) the map \(x \mapsto b(x, s) \) is constant on path-components of \(N \), therefore locally constant (this is where the local path-connectedness is used), therefore continuous, so that the map \(b \) is continuous.

At this point we have that \(F \) is fully faithful (under these two hypotheses on \(X \)). One consequence is that two covering spaces of \(X \) are isomorphic if and only if the give rise to isomorphic \(G \)-sets.

The most important covering spaces \((E, p)\) are those for which \(E \) is path-connected. Observe that these are precisely the ones for which the \(G \)-set \(F(E, p) \) is transitive. Indeed, transitivity is equivalent to saying that any two points in the fiber \(p^{-1}(x_0) \) are related by a path in \(E \); and since every path in \(E \) is related to some point in that fiber (by the path-connectedness of \(X \)) this in turn is equivalent to saying that any two points in \(E \) are joined by a path.

(By the way, since \(X \) is assumed locally path-connected it follows that \(E \) is locally path-connected; and this implies that \(E \) is path-connected if it is connected.)

Recalling the relationship between transitive \(G \)-sets and subgroups of \(G \), we now have a one-to-one correspondence between connected covering spaces of \(X \) (up to isomorphism) and at least some subgroups of \(G \) (up to conjugacy). (We have not yet addressed the question of whether every subgroup corresponds to a covering space.) Denote by \(E_H \) the covering space corresponding to the subgroup \(H \), if it exists.

We now work out what \(H \) is in terms of \(E_H \). It is the stabilizer group of the action of \(G \) on \(p^{-1}(x_0) \). It depends on a choice of point \(e_0 \) in that fiber. The loops in \(X \) whose classes fix \(e_0 \) are those which lift to loops based at \(e_0 \), in other words those whose classes belong to the subgroup \(p_\ast \pi_1(E_H, e_0) \) of \(G \). So that’s \(H \). Since the homomorphism \(p_\ast \) is injective (by Lemma 2), \(H \) is in fact isomorphic to \(\pi_1(E_H, e_0) \). Its index in \(G \) is the “number of sheets”, that is, the cardinality of the fiber.

Another consequence of the faithfulness is that the group of automorphisms of the covering space \(E_H \) is the group of automorphisms of the \(G \)-set \(H \setminus G \). This can be described as \(N_H G / H \), where \(N_H G \) is the normalizer of \(H \) in \(G \). Let’s work this out.

A \(G \)-map \(f \) from \(H \setminus G \) to a \(G \)-set \(S \) determines an element \(s = f(H) \in S \). This element is fixed by \(h \in H \):

\[
sh = f(H)h = f(Hh) = f(H) = s.
\]

The map \(f \) is in turn determined by \(s \), because \(f(Hg) = f(H)g = sg \) for all \(g \in G \). Note that, as a definition of a map \(f \), the equation \(f(Hg) = sg \) is unambiguous only if \(s \) is fixed by \(H \): We need that \(sg = sg’ \) whenever \(Hg = Hg’ \), that is, we need that \(sg = shg \) for every \(g \in G \) and \(h \in H \), that is, we need that \(s = sh \) for every \(h \in H \). Moreover, given any \(s \) fixed by \(H \), the map of sets defined by \(f(Hg) = sg \) will be a \(G \)-map taking \(H \) to \(s \). So the \(G \)-maps \(H \setminus G \) correspond bijectively with the elements of \(S \) that are fixed by \(H \).

In the special case \(S = K \setminus G \) the elements fixed by \(H \) are the cosets \(Ka \) such that for every \(h \in H \) we have \(Kah = Ka \), that is, \(aHa^{-1} \subset K \). Thus a map of covering spaces \(E_H \to E_K \) corresponds to a \(G \)-map \(H \setminus G \to K \setminus G \), and such a map exists if and only if some conjugate of \(H \) is contained in \(K \).
Let’s look closely at the special case $H = K$. A G-map $H \setminus G \to H \setminus G$ has the form $f_a : Hg \mapsto Hag$, where a is such that $aHa^{-1} \subseteq H$. f_a depends only on the coset Ha. The composition of two such maps is given by $f_a \circ f_b = f_{ab}$, because

$$f_a(f_b(Hg)) = f_a(Hbg) = Ha(bg) = H(ab)g = f_{ab}(Hg).$$

f_a is always surjective. For it to be injective means that if $Ha = Hag$ then $H = Hg$, in other words if $g \in a^{-1}Ha$ then $g \in H$. Thus aHa^{-1} must be equal to H, not just contained in it.

The elements $a \in G$ such that $aHa^{-1} = H$ form a subgroup of G called the normalizer of H and denoted N_GH. H is normal in its normalizer. We find that the group of automorphisms of the G-set $H \setminus G$ is isomorphic to the quotient N_GH/H.

The group of automorphisms of a covering space is also called the group of covering transformations or deck transformations. Denote it by $\text{Deck}(E)$. So for a connected covering space we have $\text{Deck}(E_H) \simeq N_GH/H$.

A connected covering space E_H is called regular if the corresponding subgroup $H \subseteq G$ is normal, or equivalently if the action of $\text{Deck}(E)$ on a fiber is transitive.

If $K/H \subseteq N_GH/H = \text{Deck}(E_H)$ is a subgroup of the group of automorphisms of a connected covering space of X, then the quotient space (orbit space) for this action of K/H on E_H is again a connected covering space of X. The fiber of the new covering space, as a (right) G-set, can be read off from the fiber of the old one: divide out $H \setminus G$ by the (left) action of K/H. This yields $K\setminus G$, so the new covering space is E_K.

As a special case, if U is a simply-connected (universal) covering space of X then $\text{Deck}(U) = G$ and the orbit space $H \setminus E$ for any subgroup is the covering space E_H.

We have not yet shown that a universal covering space exists, but, by the discussion above, if it does then every E_H can be constructed from it as an orbit space. Thus the functor F will be an equivalence of categories if X has a universal covering space. To prove that it does, we need another assumption.

HYPOTHESIS 3: X is semi-locally simply-connected.

This means that every point x has a neighborhood such that every loop in that neighborhood becomes trivial in $\pi_1(X,x)$.

Let’s show that if X satisfies all of these hypotheses then it has a simply-connected covering space E. To decide what the points in E should be, we can work backwards: As soon as a point $e_0 \in E$ over $x_0 \in X$ is chosen, then the points of E are going to have to correspond bijectively with the homotopy classes of paths in X originating at x_0. That is because by Lemmas 1 and 2 the path classes originating at x_0 in X are in bijection with the path classes in E originating at e_0, while in the simply-connected space E the path classes originating at e_0 are in bijection with the points. So we can define the set E to be the set of all path classes $[\alpha]$ in X with $\alpha(0) = e_0$. The problem is to find the right topology on this set. In any case it has a map $p : E \to X$ given by $p([\alpha]) = \alpha(1)$.
Consider the following open sets \(U \subset X \): those such that \(U \) is path-connected and every loop in \(U \) is nullhomotopic in \(X \). Just for this proof these will be called the \textit{good} sets. By assumption, they form a basis for \(X \). If \(U \) is good, and if \(a = [\alpha] \) is a homotopy class of paths in \(X \) from \(x_0 \) to some point \(x \in U \), then let \(U_a \subset E \) be the set of all classes \(ab \) where \(b \) is represented by a path in \(U \). The map \(p \) takes \(U_a \) into \(U \), of course, and in fact this map \(U_a \to U \) is a bijection. It is surjective because \(U \) is path-connected. It is injective because if \(p(a[\beta_1]) = p(a[\beta_2]) \) for two paths \(\beta_1 \) and \(\beta_2 \) in \(U \) (both starting at \(x \)) then, since the loop \(\beta_1 \beta_2 \) is nullhomotopic, \([\beta_1] = [\beta_2] \). We will use these sets \(U_a \) as basis for a topology in \(E \).

Note that \(a \) belongs to \(U_a \), and also that if \(a' \) belongs to \(U_a \) then \(U_a = U_{a'} \).

The collection of sets \(U_a \) is indeed a basis for a topology, because if an element \(a \in E \) belongs to two such sets \((U_1)_{a_1} = (U_1)_a \) and \((U_2)_{a_2} = (U_2)_a \) then it also belongs to another set \(U_a \) contained in their intersection (just choose a path-connected \(U \) contained in \(U_1 \cap U_2 \) and containing \(p(a) \)), and because the union of them all is \(E \).

The main thing in showing that the projection \(p \) makes \(E \) a covering space of \(X \) is to note that for each good \(U \) and each \(a \) the map \(U_a \to U \) is a homeomorphism. This is straightforward.

Finally, to see that \(E \) is simply connected, just verify that the right action of \(\pi_1(X, x_0) \) on the fiber \(p^{-1}(x_0) \) by path lifting (transport) is free and transitive. This fiber is, by definition of \(E \), the same set as \(p^{-1}(x_0) \). Making sure that the action is the expected one means identifying the (continuous) liftings of loops. If \(\alpha \) is a loop in \(X \) based at \(x_0 \) then one has to see that the following map \(I \to E \) is continuous and therefore is the lifting \(\bar{\alpha} \) guaranteed by Lemma 1:

\[
\begin{align*}
\bar{\alpha} : s &\mapsto [(u \mapsto \alpha(su))].
\end{align*}
\]

To verify continuity at \(s_0 \), just choose a good set \(U \) containing \(p([(u \mapsto \alpha(s_0u))]) = \alpha(s_0) \), note that a neighborhood of \(s_0 \) is mapped into a sheet \(U_a \), and observe that the continuity of the map to \(U_a \) is equivalent to the continuity of the corresponding map to \(U \) (composition with \(p \)), which in this case is simply \(\alpha \) (restricted to that neighborhood of \(s_0 \)).

THE GROUPOID POINT OF VIEW

There is a slightly different way of doing all of this, in which no basepoint \(x_0 \) is singled out and the assumption of path-connectedness is dropped.

The \textit{fundamental groupoid} \(\pi(X) \) is the category whose objects are the points of \(X \), and in which a morphism from \(x \) to \(x' \) is a path class. Transport makes a contravariant functor from \(\pi(X) \) to the category of sets, for every covering space \((E, p : E \to X) \). It takes the object \(x \) to the fiber \(p^{-1}(x) \), and the morphism \(a \) to the transport map \((e \mapsto ea) \).

A map of covering spaces gives a (natural) map of functors. We get, in fact, a functor from the category \textit{Cov}_X to the category \textit{Fun}(\pi(X)^\text{op}, \text{Sets}) of functors \(\pi(X)^{\text{op}} \to \text{Sets} \). This is always faithful, full if \(X \) is locally path-connected, and surjective on isomorphism classes if \(X \) is semi-locally simply-connected.

In the case when \(X \) is path-connected and a point \(x_0 \) is chosen, this boils down to the earlier result,
because the groupoid is one in which all objects are isomorphic. In a little more detail: Suppose that Γ is a groupoid in which every object is isomorphic to a particular object x_0. Let G be the group of morphisms $x_0 \to x_0$ in Γ. The inclusion of the full subcategory $\{x_0\} \to \Gamma$ is an equivalence of categories, and it follows that the restriction map $Fun(\Gamma^{op}, Sets) \to Fun(\{x_0\}^{op}, Sets)$ is also an equivalence of categories. But $Fun(\{x_0\}, Sets)$ is the same thing as the category of (right) G-sets.