COMMON COMPLEMENTS OF TWO SUBSPACES OF A
HILBERT SPACE

MICHAEL LAUZON AND SERGEI TREIL

ABSTRACT. In this paper we find a necessary and sufficient condition for
two closed subspaces, X and )Y, of a Hilbert space H to have a common
complement, i.e. a subspace Z having trivial intersection with X and )
and such that H=X+Z =Y+ Z.

Unlike the finite-dimensional case the condition is significantly more
subtle than simple equalities of dimensions and codimensions, and non-
trivial examples of subspaces without a common complement are possi-
ble.

0. INTRODUCTION

0.1. Statement of the problem and discussion. In this paper we study
when two subspaces X and ) of a Hilbert space H possess a common comple-
ment. Recall that a subspace Z of a Banach space H is called a complement
of (or a complementary subspace to) a subspace X C H if X and Z have
trivial intersection and H = X' 4+ Z. The latter means that any vector h € H
can be (uniquely, because X N Z = {0}) represented as h = x + 2z, v € X,
z € Z. This unique representation can serve as an alternative definition of
a complement.
Clearly, if Z is a complement of X, then X is a complement of Z, and
sometimes we will call X and Z complementary subspaces.
Unlike the finite dimensional case (dimH < oco) the conditions
(i) XN Z = {0} and
(ii) X 4 Z is dense in ‘H
are not sufficient for X and Z to be complementary subspaces; one more
condition is needed. Namely, the closed graph theorem implies that if Z

complements X, then the skew projection P = PXH 2 onto X parallel to Z,

(0.1) PXHZ(x—i—z):x, reX,zeZ

is a bounded operator. Under the above assumptions (i) and (ii) this con-
dition is necessary and sufficient for the subspaces X and Z to be comple-
mentary subspaces.
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In the finite dimensional case finding a common complement is trivial. If
X CH,dimX =n, and dim’H = N, then the collection of all subspaces Z
complementary to X is an open dense subset of the set of all subspaces of
dimension m = N — n (Grassmannian). Note, that the set of all subspaces
complementary to X is a set of full measure in the above Grassmannian
(which is a compact smooth manifold of dimension nx (N —n)). So, using the
Baire category theorem or measure theoretic reasoning one can conclude that
any countable set of subspaces of dimension n has a common complement,
and moreover, the set of all such common complements is a set of second
category and a set of full measure in the Grassmannian of subspaces of
dimension m = N — n.

The situation in the infinite dimensional case, as Theorem 0.1 below
shows, is much more interesting. Of course, one could immediately see
that the equality of dimensions (and codimensions) is not sufficient for the
existence of a common complement. Indeed, it is possible that subspaces X
and Y have equal dimensions and codimensions, but X’ ;Cé Y so they do not
have a common complement.

The situation is, in fact, much more interesting. It can be easily shown,
see Corollary 1.4 below, that the existence of a common complement implies
that

codimX XNY:=dimXoe XnY)=
=dim(Y e (X nY)) = codim,, X N Y,

and we thought for some time that this equality of codimensions would be
sufficient. To our surprise, this simple necessary condition turns out to be
insufficient, and the real necessary and sufficient condition is much more
subtle.

However, in some “philosophical” sense the equality of codimensions is
necessary and sufficient. Namely, it is necessary and sufficient if we replace
the intersection XNY by the “c-intersection”; see Theorem 5.1 for the precise
statement.

Also note that we do not even have a conjecture about when three sub-
spaces have a common complement.

0.2. Main result. To state our main result let us recall how one can de-
scribe the geometry of a pair of subspaces up to unitary equivalence. Let
P= Py be the orthogonal projection onto ), and let the operator G : X —
Y (Gramian) be defined by

G =P,

Clearly the adjoint operator G* : Y — X is defined by G* =P, D).

It is a well known fact (and it will be shown later) that for any bounded
operator G (from one Hilbert space to another) the essential parts of the op-
erators G*G and GG, i.e. the operators G*G’(ker G)* and GG*|(ker G*)*

are unitarily equivalent.
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So, the geometry of a pair of subspaces is completely determined by the
following objects:

(1) The operator G*G, or even only its essential part G*G |(ker G)*;
(2) The dimensions of two subspaces, Xy and )y

Xo=kerG={recX: 2zl )} Yo =kerG*={yec)y: :z L X}

The following theorem is the main result of the paper. It holds for both real
and complex Hilbert spaces.

Theorem 0.1. Let £(.) be the spectral measure of the operator G*G (or of
G*G‘(ker G)!). Then the subspaces X and Y have a common complement
if and only if

(0.2) dim Xy + dim E((0,1 — &)X =dim Yy + dim E((0,1 —¢))X
for some € > 0 (for all sufficiently small e > 0).

Remark 0.2. We do not assume that the space H is separable. The dimension
in this case means the cardinality of an orthonormal basis (it is well known,
see Section 1.1 below, that it does not depend on the choice of basis). We
add cardinalities according to usual rules, cf [2, Corollary 1.4.30], i.e. the
sum is the maximal dimension, except the case when both dimensions are
finite.

Remark 0.3. It is easy to see that one can always replace £((0,1 — €)) by
E((0,1 —€]) in the condition (0.2).

Remark 0.4. If dim Ay = dim )y then a common complement always exists.

Remark 0.5. If H is a separable space, the subspaces X and ) do not have
a common complement if and only if dim Xy # dim )y and the operator
(I- G*G)‘(ker G)* is compact.

Indeed, if there is no common complement and H is seperable, then
dim Xy # dim )y and dim&((0,1 — ¢])X is finite for all € > 0. The lat-
ter exactly means that (I — G*G)’(ker G)! is a compact operator.

1. PRELIMINARIES

1.1. Remarks about dimension. This subsection deals with the defini-
tion of dimension for non-separable Hilbert spaces. A reader uninterested
in the non-separable case may skip this subsection, since the corresponding
results are trivial for separable spaces.

As it is customary in functional analysis we assume the Axiom of Choice
here. It is needed in too many places, and we do not have any desire to go
very deep into the set theory to investigate what makes sense in its absence.

The dimension of a Hilbert space (or subspace) is defined as the cardinal-
ity of an orthonormal basis. An old theorem due to Lowig and Rellich, see
[1, Theorem IV.4.14] asserts that all orthonormal bases in a given Hilbert
space H have the same cardinality, so the dimension is well defined.



4 MICHAEL LAUZON AND SERGEI TREIL

Since unitary operators map orthonormal bases to orthonormal bases, two
Hilbert spaces are isometrically isomorphic if and only if they have the same
dimension.

If A: Hi — Hj is an isomorphism (a bounded invertible operator) be-
tween two Hilbert spaces, it can be represented as A = UR (polar decompo-
sition), where R = |A| := (A*A)Y/? and U : H; — H, is a unitary operator.
So, if two Hilbert spaces are isomorphic, they are isometrically isomorphic,
and therefore the dimension is preserved under the isomorphism.

1.2. Codimension. The codimension of a subspace X of a Hilbert space H
is defined as dim X . We can, in fact, show that all complements of X have
the same dimension (and therefore the same dimension as the orthogonal
complement).

Proposition 1.1. Let X and Z be complementary subspaces of a Hilbert
space H. Then codim X = dim 7.

Proof. Take arbitrary y € X1, Since Z complements X, y has the unique
decomposition

y=z+z wze€X,ze€Z [z <Clyl
Therefore, the orthogonal projection PX , onto X L maps Z isomorphically

onto X+, hence dim Z = dim X . O

Corollary 1.2. The codimension of a subspace is preserved under isomor-
phisms (of the whole space).

1.3. Some trivial observations. Before discussing the main result, let
us make several observations. The following trivial proposition holds for
arbitrary Banach spaces

Proposition 1.3. The subspaces X and Y have a common complement if
and only if there exists a bounded (not necessarily orthogonal) projection P
onto one of the spaces (say, for definiteness, onto Y ) such that the operator

G: X =Y,  G:=PlX
is an isomorphism (bounded invertible operator) between X and Y.

Proof. If such a P exists, then Z := ker P is a common complement of X
and ). Indeed, the projection P = P is bounded, so Z is a complement

Y|z
of Y. The projection PXH ~ onto X parallel to Z can be defined by

_ -1
Pz =9 P

so it is also bounded. So Z is a complement of X as well. ([l

Now let us return to Hilbert spaces.
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Corollary 1.4. If two subspaces X and Y of a Hilbert space have a common
complement, then the dimensions of the spaces X © (X NY) and Y& (XNY)
coincide (i.e. codim, X NY = COdiIIly X NY, where codim,, stands for the
codimension in X ).

Proof. Trivial, since the operator G from the above Proposition 1.3 maps
X © (X NY) isomorphically onto Y & (X NY) O

Proposition 1.5. If X, Y C 'H have a common complement in the closure
of X + ) then X and Y have a common complement in H.

Proof. Let Z be the common complement of X’ and ) in Clos(X +)). Then
Z @ (X +Y)*tis a common complement of X and ) in H O

Thus without loss of generality we may always assume Clos(X +)) = H.

2. SUFFICIENCY

In this section we prove that condition (0.2) is sufficient for the subspaces
X and ) to have a common complement. We first treat several simple cases,
and then we show that the general case can be treated as a “direct sum” of
the simple cases.

Recall that the Gramian G : X — ) is defined as

G = Py\X
and its adjoint G* is defined by
G" =P,V

2.1. Some simple cases. First we consider the case where X and ) are,
in some sense, completely non-orthogonal.

Proposition 2.1. If G is invertible then Z = Y+ is a common complement
of X and ).

Proof. Follows immediately from Proposition 1.3 U

The next case will be treated by changing the inner product in H. Note
that having a common complement is a topological property, meaning it does
not change if we replace the norm (inner product) in H by an equivalent one.
If we have a Hilbert space H and A = A* > 0 is a bounded and invertible
operator in H, then (-,-),, (f,9), = (Af,g) defines an equivalent inner
product in H (in fact, all equivalent inner products in H can be defined this
way, but we won’t need that in what follows).

Let H = X & ) be the orthogonal sum of X and ). Given an operator
G:X — ), |G| <1 consider a norm on H defined by the operator

I G
a=a-( 6 9)
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Clearly, if |G| < 1, the operator A, is positive and invertible, therefore the
corresponding norm is equivalent to the original norm on H. Thus, all such
norms are equivalent to each other.

Note that if G = G, then the corresponding norm in H is the original
norm in X + Y C H. Also note that if G = 0 then X L Y in the norm
generated by A ..

Proposition 2.2. If |G| <1 and dim{X¥ & (XNY)} =dim{yY s (XNY)},

then X and Y have a common complement.

Proof. As in Proposition 1.5 we can assume without loss of generality that
X + ) is dense in H.

The equality of dimensions implies that there exists an isomorphism
(bounded invertible operator) G : X — ). Multiplying it by a small number
we can always assume that [|G]| < 1. So, as we just discussed above, the
norms generated by the operators AG and AG are equivalent, and both are
equivalent to the norm corresponding to Ay (meaning Ag with G = 0).

The norm corresponding to A is the norm on X + ) inherited from H.
This norm is equivalent to the norm generated by Ag, therefore the subspace
X + ) is closed, and so X + )Y = H.

Therefore A, gives the equivalent norm on H. Note that in this norm
the corresponding Gramian G equals G. Since it is invertible, Proposition
2.1 implies that X and ) have a common complement. O

2.2. The general case. To treat the general case we split the subspaces
X and )Y into orthogonal sums, X = X1 & Xy, YV = V1 D )s, so that the
subspaces Hy, := Clos(&Xy + YVx) are also orthogonal.

Then, if each pair X, Vi has a common complement in Hg, k£ = 1,2,
then X and ) clearly have a common complement.

Let £(-) denote the spectral measure of the operator G*G and &,(-) be
the spectral measure of GG*. Fix a € (0,1) and define

(2.1) X :=E([0,a)X, Xy :=E([a,1)X,

and similarly,

(2.2) V1 :=E6.([0,a)Y, Yo:=E([a,1)V.

where a =1 — ¢, ¢ is from the assumption (0.2) of the theorem.

2.2.1. The case of trivial kernels. Let us first consider the case when both
ker G and ker G* are trivial (then the assumption (0.2) is automatically
satisfied for all € € (0,1)).

Consider the polar decomposition G = UR, where R = (G*G)Y/? and
U:X — Y is a unitary operator. Since GG* = UR?U* = U(G*G)U* we
have for the spectral measures
This implies that Vi, = UAX), k = 1,2, and therefore dim X}, = dim V.
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Since X} are G*G-invariant, and so R-invariant
GX, =URX, CUX, = Vg,

and similarly G*Y, C Xj. Note that it is also easy to prove that GAy = Vs
and GA7 is dense in )y, and similarly for Yy, but we will not need these
facts now.

To show that H; L Hs it is sufficient to show that X7 L ) and A5 L ).
Let us show that X} 1L ),. Take x € Xy, y € Vo. We have

(z,y) = (Pyz,y) = (Gz,y) =0

since Gz € V1 1 )Vo. The orthogonality A5 | ) is proved similarly.

Now we need to prove that the pairs X%, Vi, k = 1, 2 have a common com-
plement. For the pair X, )i the corresponding Gramian is the restriction
Gle . Then for X5, )5 the Gramian is invertible, and for X7, ) its norm is
less than 1. Since, as we discussed above, dim X}, = dim Y, Proposition 2.1
implies that subspaces A5, )2 have a common complement, and Proposition
2.2 asserts the existence of a common complement for the pair X7, V;. 0O

2.2.2. The case of non-trivial kernels. Let us now consider the general case,
when we allow non-trivial kernels for G and G*. We set a = 1 — ¢, where ¢
is from the assumption (0.2) of Theorem 0.1, and define X}, V) as above.

The simplest way to understand the geometry here is to first imagine
the case of trivial kernels and then add to X} and ), the orthogonal (to
everything else) subspaces ker G and ker G* respectively. Since we added
orthogonal subspaces, the orthogonality condition remains true. The sub-
spaces Xo, Vs will not change, so this pair has a common complement. As for
the pair X7, )1, the norm of corresponding Gramian remains the same (by
adding two orthogonal to everything subspaces, we just added zero blocks
to the “old” Gramian), so it is less than 1. Assumption (0.2) of the theorem
means that the dimensions of the “new” X; and ) coincide, so Proposition
2.2 implies that there is a common complement for this pair as well.

To write the last paragraph formally, let X := X S ker G, )V := Y ©
ker G*, and let Gg : X0 — )0 be the restriction of G. Let us denote by
X,? , y,& Hg the corresponding subspaces for G, and by £°, £ the spectral
measures for Go and G respectively. Clearly

Xo=X), M=),
and
X :Xlo@kerG, Vi :y?@ker(}*.

Since ker G L Y @ X0, and ker G* L X @ )V, the subspaces H; and Hs are
orthogonal.

Because they coincide with X20 and yg, the subspaces X5, )5 possess a
common complement. Since, as we already discussed for the case of trivial
kernels,

dim & = dim ) = dim £2((0,a))x" = dim £((0, a)) X,



8 MICHAEL LAUZON AND SERGEI TREIL

the assumption (0.2) implies
dim X} = dim &Y + dimker G = dim )Y 4 dim ker G* = dim ).
Now notice that ||G|X1| = [|Go|XD|| < 1 (the operators differ by zero

blocks), so Proposition 2.2 implies that A} and ), have a common comple-
ment.

3. NECESSITY

Lemma 3.1. Let X and Y be subspaces of a Hilbert space H. Suppose there
exists an isomorphism (bounded invertible operator) A: X — 'Y such that

o — Az|| < gz  VzelX,
for some ¢ < 1. Then codim X = codimY .

Proof. Define an operator A, : X — X by A,z := P Az, where P, is
orthogonal projection onto X. Since

[Axz —af| = [Py (Az — 2)|| < [[Az — x| < q/=],
we have [|A, —I|| < ¢ <1,s0 A is invertible.
For y € Y we have
_ -1
so P, defines an isomorphism between X and Y. Therefore, by Proposition

2.1, X1 is a common complement for X and Y. Hence, see Proposition 1.1,
codim X = codimY = dim X*. O

Now suppose that X and ) have a common complement. Then, by Propo-
sition 1.3, there exists a bounded projection P onto ) such that G := 77|X
is an isomorphism between X and ).

We want to prove that condition (0.2) from Theorem 0.1 holds for some
e > 0. In the notation of the previous section, see (2.1) (2.2), this condition
can be rewritten as

codim,, & := dim(X & &) = dim(Y © V) =: codim,, Vs,

where a = 1 — ¢. Here codim e stands for the codimension in X. Since G is
an isomorphism between X and )Y,

codimX Xy = codimy GAXs.

So we want to show that the subspaces GXy = PX; and Vo = GX, = Png
have the same codimension in ). To do that we will use Lemma 3.1.
Take z € Xy. Then ||Gz|? > al|z|]?, so

1—a €
z]* = 1G=|* < (1 - a)llz]* < —[|Gz|* = — | G=|]*.
a 1—c¢
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Hence
|Gz — Pz|? = |Byz — Px|* = |P(Pyz — 2)|* < | P - [Pz — 2|
=PIl = 1Pyl*) = IPI*(l=]* - || G=|*)
€
IPI?Gx|”.

IN

1—¢

Thus for small € > 0 the assumptions of Lemma 3.1 hold for subspaces Py Xy
and PX5 in Y with the operator A : PyXQ — PX; defined by

A=P-(G|xy)™!

(recall that G maps X5 isomorphically to )s).

4. AN EXAMPLE OF SUBSPACES WITHOUT COMMON COMPLEMENT

As we said above, if the space H is separable the only situation when a
common complement does not exists is when (I — G*G)|(ker G)* is a com-
pact operator, and dim ker G # dim ker G*. This gives us the possibility to
construct non-trivial examples of subspaces without a common complement.

By non-trivial example we mean here a pair of subspaces satisfying the
simple necessary condition

codim , (X NY) = codim, (X NY),

and not possessing a common complement.

In this section we construct subspaces X and ) of equal dimensions and
codimensions and with trivial intersection, which do not have a common
complement.

Let H = ¢2 the space of square summable sequences with indices 0, 1,2, . . ..
We let {e;}72,, be the standard orthonormal basis of H. We will define X
and Y by defining a basis for these subspaces. We define:

Yo = €0,
and for k£ >1
1 L 1
= COS — €9 sin —e
Yk 2 2k—1 2 2k
1 1
T = COS —€9r_1 — SN —e9.
k & 2k—1 2 2k

We see that X = span {z;};°, and )} = span {y;};°, are subspaces of
equal dimension and codimension, X N'Y = {0}, with no common com-
plement. Indeed, it is trivial that G is a compact perturbation of I, and
0 = dimker G # dimker G* = 1.
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5. A GEOMETRIC INTERPRETATION OF THE RESULTS.

The interesting thing about the main result of the paper is that despite the
fact that the existence of a common complement is a topological condition
(i.e. it does not change when one replaces the norm by an equivalent one),
the orthogonality mysteriously appears in the results and plays an important
role here.

In this section we give a more geometric version of the above Theorem
0.1, which does not include orthogonality explicitly. We say here “explicitly”
because it still requires a Hilbert space norm. We do not know if it is true
if one replaces the Hilbert space norm by an equivalent Banach space norm.

Let us introduce a few definitions. Let K be a subset of a Hilbert space
X. We define the lower linear dimension of K as

sup{dim L : L is a linear subspace of K}
and the upper linear codimension of K by
inf{codim L : L is a linear subspace of K}.

If the reader is not comfortable with taking the supremum or infimum of
a family of cardinalities, he should not be worried, since in our case there
always be subspaces of maximal dimension and subspaces of minimal codi-
mension.

Let € > 0. For the subspaces X, )Y of H define the cones

IC; = {z e X :dist(z,)) < e||z||},
IC; ={y e Y :dist(y, X) < ellyl}.

For small € one can treat the cones IC;, K¢ as “c-intersection” of X and ).

As was said before in Corollary 1.4, if the subspaces X and ) have a
common complement, the intersection X N ) has the same codimensions in
X and in Y. Theorem 0.1 shows that the equality of codimensions is not
sufficient for the existence of a common complement. The theorem below,
which is a reformulation of the main result (Theorem 0.1) shows that if one
replaces the intersection X N with the “c-intersections” IC;, IC;, then the
equality of codimensions is necessary and sufficient. While its condition is
harder to check than condition (0.2) of Theorem 0.1, we think the Theorem
5.1 is still interesting because it provides a geometric interpretation of the
results.

Theorem 5.1. Subspaces X and Y of a Hilbert space H have a common
complement if and only if for some (small) € > 0 the wupper linear codimen-
sions of the cones IC; mn X and IC; 'Y coincide.

Proof. To prove the theorem we will show that the upper linear codimensions
of the cones IC; and IC; equal to

dim £([0,1 — £%)] = dimker G + dim £((0,1 — £2))
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and
dim &,([0,1 — £%)] = dimker G* + dim &,((0,1 — £2))
respectively. Recalling that dim &,((0,1 — £2)) = dim £((0,1 — £2)) we will
see that the condition of Theorem 5.1 is exactly the assumption (0.2) of
Theorem 0.1 (with ¢ replaced by £?).
To compute the codimension of the cones, let us notice that for z € X

. 2
[dist(z, V)] = ||2]|* = [Pyz|® = [|2[]* — |G|
Therefore, the cone IC; is the cone of nonnegative vectors of the operator
A=G*G — (1-¢2)I,ie. Ke ={z € & : (Az,x) = 0}, and similarly, IC;}
is the cone of the nonnegative vectors of A, :== GG* — (1 — £2)I. Then the
theorem follows from the lemma below.
Let A be a bounded selfadjoint operator in a Hilbert space H, and let K

be the cone of nonnegative vectors of A, K := {x € H : (Az,z) > 0}. Let £
be the spectral measure of A, and let

Hy = 8(0,00)),  H- = &((—00,0)).
Lemma 5.2. The upper linear codimension of the cone K is exactly
codim H; =dim H_.
The theorem follows immediately from the lemma, since for the operator
A= G*G — (1 — &)1 defined above,
Hiy=&(1-¢%1)), H-=£&((0,1-¢%),
and similarly for A,.
Proof of Lemma 5.2. Consider a (closed) subspace X C K. Let P be the
orthogonal projection onto H,, and let Y := Clos PX.

By the construction of Y, the set Yy :={y € Y : y L X} = {0} Since
X 1 H 6Y, any vector z € X orthogonal to Y is automatically orthogonal
to Hy. But since X C K, we have X N H_ = {0}, so Xy := {z € X :
x 1L Y} = {0}. Therefore the condition (0.2) of Theorem 0.1 are satisfied
(see Remark 0.4 there), and X and Y have a common complement, say Z.
Proposition 1.1 implies that

codim X = codimY = dim Z,
and since Y C H,, we have codimY > codim Hy. Thus, H. has the

smallest codimension among all subspaces of K. O

O
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