Homework assignment, October 5, 2005.

1. A point is randomly thrown in a disc of radius 1. Let ξ be the distance from the point to the center. Assuming that the point is uniformly distributed in the disc, find distribution function, density, mean value and variance of ξ.

2. a) Let a point is thrown at random in the disc $x^2 + y^2 \leq 1$, and let ξ_1, ξ_2 be x and y coordinates of the point. Assuming that the point is uniformly distributed in the disc, show that the correlation coefficient of ξ_1, ξ_2 is zero, but ξ_1 and ξ_2 are not independent.

b) Assume now that the point is uniformly distributed in the square $-1 \leq x \leq 1, -1 \leq y \leq 1$, and ξ_1, ξ_2 are its x and y coordinates respectively. Are ξ_1 and ξ_2 independent?

3. Let random variables ξ_1, ξ_2 satisfy $P\{\xi_1 \leq a, \xi_2 \leq b\} = P\{\xi_1 \leq a\}P\{\xi_2 \leq b\}$ for all a and b. Show that ξ_1 and ξ_2 are independent, i.e. that

$$P\{a_1 < \xi_1 \leq b_1, a_2 < \xi_2 \leq b_2\} = \{a_1 < \xi_1 \leq b_1\}P\{a_2 < \xi_2 \leq b_2\}$$

for all a_1, a_2, b_1, b_2.

4. Ch. 4, # 16, 17.

5. St. Petersburg paradox. (Correct version) A person tosses a fair coin until a tail appears for the first time. If the tail appears on the nth flip, the person wins 2^n dollars. Let X denote the player’s winnings. Show that $E X = +\infty$.