MATH 251 PROBLEMS

(1) Consider a partially ordered set \(X \) and let \(\text{Cat}(X) \) be the associated categories (a unique arrow \(x \rightarrow y \) for each pair \(x \leq y \)). Show that the product of \(x \) and \(y \) in \(\text{Cat}(X) \), if exists, is the greatest lower bound of \(x, y \). Identify similarly the coproduct.

(2) Use the previous exercise to cook up a category where products and coproducts don’t always exist.

(3) Let \(Y \) be a set and \(P(Y) \) be the set of all subsets of \(Y \), partially ordered by inclusion. Identify explicitly products and coproducts in \(\text{Cat}(P(Y)) \).

(4) Let \(A \rightarrow B \) be an abelian group homomorphism. What is the fibered product \(A \times_B 0 \) in elementary terms? What is the cofibered coproduct \(0 \cap^A B \)?

(5) If you have not done so, prove that a group object in \(\text{Groups} \) is an abelian group.

(6) Lang p 115 ex 1,3,4

(7) If \(S \subset R \) contains no zero divisors, show that \(R \rightarrow S^{-1}R \) is injective.

(8) Prove that if \(p \neq q \) are distinct primes, then \(\mathbb{Z}_{(p)} \ncong \mathbb{Z}_{(q)} \).

(9) Let \(M \) be a finitely generated \(R \) module and \(S \subset R \) multiplicative. Show that \(S^{-1}M = 0 \) if and only if there is \(d \in S \) with \(dM = 0 \).

(10) Lang p. 253 ex 2,3,5,6,11

(11) Determine the minimal polynomial of \(\sqrt{2} + \sqrt{3} \)