1. (a) Using \(p(z) = \sqrt{2 + \sin \pi z} \), the parameterization is given by

\[
\mathbf{r}(\theta, z) = \langle p(z) \cos \theta, p(z) \sin \theta, z \rangle
\]

with \(0 \leq \theta \leq 2\pi \), \(0 \leq z \leq 10 \). We calculate

\[
\mathbf{N}(\theta, z) = p(z) \langle \cos \theta, \sin \theta, -p'(z) \rangle.
\]

Since \((p(z))^2 = 2 + \sin \pi z \), we have \(2p(z)p'(z) = \pi \cos \pi z \) and so

\[
p(z)p'(z) = \frac{\pi}{2} \cos \pi z.
\]

Hence,

\[
|\mathbf{N}(\theta, z)| = \sqrt{(p(z))^2 + (p(z)p'(z))^2}
\]

\[
= \sqrt{2 + \sin \pi z + \frac{\pi^2}{4} \cos^2 \pi z}
\]

\[
= \frac{1}{2} \sqrt{8 + 4 \sin \pi z + \pi^2 \cos \pi z^2}.
\]

(b) On \(S \), we have \(f(x, y, z) = x^2 + y^2 = p(z)^2 \). So,

\[
I = \iiint_S f \, dS = \iint_D (p(z))^2 |\mathbf{N}(\theta, z)| \, dA(\theta, z)
\]

\[
= \int_0^{2\pi} \int_0^{10} (2 + \sin \pi z) \frac{1}{2} \sqrt{8 + 4 \sin \pi z + \pi^2 \cos \pi z^2} \, dz \, d\theta
\]

\[
= \pi \int_0^{10} (2 + \sin \pi z) \sqrt{8 + 4 \sin \pi z + \pi^2 \cos \pi z^2} \, dz.
\]

(c) Write \(\mathbf{F} = \langle x, y, z \rangle = \langle P, Q, R \rangle \). Using \(x = p(z) \cos \theta \) and \(y = p(z) \sin \theta \), we have

\[
\mathbf{N}(\theta, z) = \langle x, y, -(\pi/2) \cos \pi z \rangle = \langle N_1, N_2, N_3 \rangle
\]
and so
\[PN_1 + QN_2 + RN_3 = x^2 + y^2 - \frac{\pi}{2} z \cos \pi z \]
\[= p(z)^2 - \frac{\pi}{2} z \cos \pi z \]
\[= 2 + \sin \pi z - \frac{\pi}{2} z \cos \pi z. \]

Hence,
\[I = \iint_D PN_1 + QN_2 + RN_3 \, dA(\theta, z) = \int_0^{2\pi} \int_0^{10} 2 + \sin \pi z - \frac{\pi}{2} z \cos \pi z \, dz \, d\theta. \]

(d) We have
\[I = 2\pi \int_0^{10} 2 + \sin \pi z - \frac{\pi}{2} z \cos \pi z \, dz. \]

Since
\[\int_0^{10} 2 + \sin \pi z \, dz = 2z - \frac{1}{\pi} \cos \pi z \bigg|_0^{10} = \left(20 - \frac{1}{\pi}\right) - \left(0 - \frac{1}{\pi}\right) = 20 \]
and since
\[\int_0^{10} z \cos \pi z \, dz = \frac{1}{\pi^2} (\cos \pi z + \pi z \sin \pi z) \bigg|_0^{10} = \frac{1}{\pi^2} \left((1 + 0) - (1 + 0)\right) = 0, \]

we have
\[I = 2\pi(20 + 0) = 40\pi. \]

We have just used the definition of surface integral here. This problem can also be solved by use of the divergence theorem since \(\text{div}(F) = 3 \). Let \(T \) be the solid region \(x^2 + y^2 \leq 2 + \sin \pi z, 0 \leq z \leq 10 \). Calculate the volume of \(T \) (using cylindrical coordinates). It is \(V = 20\pi \). Next let \(S_1 \) be the top disk and \(S_2 \) be the bottom disk, oriented with outward unit normal vectors. On \(S_1 \), \(F \cdot n = z = 10 \) and so the flux through \(S_1 \) is \(I_1 = 10 \cdot 2\pi = 20\pi \). On \(S_2 \), \(F \cdot n = -z = 0 \) and so the flux through \(S_2 \) is \(I_2 = 0 \cdot 2\pi = 0 \). Hence, \(I = 3V - I_1 - I_2 = 60\pi - 20\pi - 0 = 40\pi \). This is pretty easy, but the direct calculation is not hard.
(e) $I = 0$. We can use either a direct calculation (from the definition of surface integral), use Stokes’ theorem, or use the divergence theorem (since $\text{div}(\mathbf{G}) = 0$). All are easy.

2. (a) From the definition of line integral,

$$I = \int_C P \, dx + Q \, dy + R \, dz = \int_0^{2\pi} yx' + (x^2 + y^2)y' + 1 \cdot z' \, dt$$

$$= \int_0^{2\pi} \sin t(-\sin t) + (\cos^2 t + \sin^2 t) \cos t + (-\sin t) + 2 \cos 2t \, dt$$

$$= \int_0^{2\pi} -\frac{1}{2} (1 - \cos 2t) + \cos t - \sin t + 2 \cos 2t \, dt$$

$$= -\frac{1}{2} t + \frac{1}{4} \sin 2t + \sin t + \cos t + \sin 2t \bigg|_0^{2\pi}$$

$$= (-\frac{1}{2} (2\pi) + 0 + 0 + 0 + 1 + 0) - (0 + 0 + 0 + 0 + 1 + 0) = -\pi.$$

(c) Write $\mathbf{G} = \sqrt{z^2 + 1}(x, y, 0)$ and $\mathbf{H} = (0, 0, 1)$. Note that $\mathbf{G} \cdot \mathbf{T} = 0$ at every point on curve C. So, $I_1 = \int_C \mathbf{G} \cdot \mathbf{dr} = \int_C \mathbf{G} \cdot \mathbf{T} \, ds = 0$. Also, note that \mathbf{H} has potential function $g(x, y, z) = z$ and that C is a closed curve. So, $I_2 = \int_C \mathbf{H} \cdot \mathbf{dr} = 0$. Since $\mathbf{F} = \mathbf{G} + \mathbf{H}$, we have $I = I_1 + I_2 = 0 + 0 = 0$.

3. (a)

$$x^2 + y \leq 1, \quad z^2 + y \geq 1, \quad x + 2z \leq 1, \quad z \geq 0.$$

(b) The projection of T into the xz-plane is given by

$$R : \quad x + 2z \leq 1, \quad z \geq -x, \quad z \geq x.$$

We subdivide R into two z-simple regions.

$$R_1 : \quad -1 \leq x \leq 0, \quad -x \leq z \leq \frac{1}{2} (1 - x)$$

$$R_2 : \quad 0 \leq x \leq 1/3, \quad x \leq z \leq \frac{1}{2} (1 - x)$$
So,

\[I = \iiint_R f(x, y, z) \, dy \, dA(x, z) \]

\[= \iiint_{R_1} f(x, y, z) \, dy \, dA(x, z) + \iiint_{R_2} f(x, y, z) \, dy \, dA(x, z) \]

\[= \int_{-1}^{0} \int_{-1}^{(1/2)(1-x)} \int_{1-z^2}^{1-x^2} f(x, y, z) \, dy \, dz \, dx + \int_{1/3}^{1} \int_{(1/2)(1-x)}^{1-x^2} f(x, y, z) \, dy \, dz \, dx. \]

4. \(p(x, y, z) = \frac{1}{2} y^2 + k(z) \) where \(k(z) \) is an arbitrary function of \(z \).

6. \(\mathbf{T} = \frac{1}{\sqrt{3}} \langle 1, 1, 1 \rangle, \, \mathbf{N} = \frac{1}{\sqrt{2}} \langle -1, 0, 1 \rangle, \, \kappa = \frac{\sqrt{2}}{3}. \)

7. area = \(\frac{1}{168} \).

8. \(I = 8\pi. \)

9. (a) We have \(I = \iiint f \, dV \) where \(R \) is the \(y \)-simple region

\[R : \quad 1 \leq x \leq 2, \quad \sqrt{2 - x} \leq y \leq \sqrt{x}. \]

Subdivide \(R \) into the two \(x \)-simple regions

\[R_1 : \quad 1 \leq y \leq \sqrt{2}, \quad y^2 \leq x \leq 2 \]

\[R_2 : \quad 0 \leq y \leq 1, \quad 2 - y^2 \leq x \leq 2 \]

So,

\[I = \iiint_{R_1} f \, dV + \iiint_{R_2} f \, dV \]

\[= \int_{1}^{\sqrt{2}} \int_{y^2}^{2} f(x, y) \, dx \, dy + \int_{0}^{1} \int_{2-y^2}^{2} f(x, y) \, dx \, dy \]
(b) We have \(I = \iiint_R f \, dV \) where \(R \) is the \(y \)-simple region

\[
R : \quad -3 \leq x \leq -2, \quad \frac{1}{2} (x + 1)^2 \leq y \leq x^2.
\]

Subdivide \(R \) into the three \(x \)-simple regions

\[
R_1 : \quad \frac{1}{2} \leq y \leq 2, \quad -1 + \sqrt{2y} \leq x \leq -2
\]

\[
R_2 : \quad 2 \leq y \leq 4, \quad -3 \leq x \leq -2
\]

\[
R_3 : \quad 4 \leq y \leq 9, \quad -3 \leq x \leq \sqrt{y}
\]

So,

\[
I = \iiint_{R_1} f \, dV + \iiint_{R_2} f \, dV + \iiint_{R_3} f \, dV
\]

\[
= \int_{1/2}^{2} \int_{-1+\sqrt{2y}}^{2} f(x, y) \, dx \, dy + \int_{2}^{4} \int_{-3}^{2} f(x, y) \, dx \, dy + \int_{4}^{9} \int_{-3}^{\sqrt{y}} f(x, y) \, dx \, dy
\]

10. (a) First of all Green’s theorem only applies to curves in the \(xy \)-plane. Secondly, they must be closed curves, in other words, the starting point is the same as the ending point. In more detail, there must a bounded region \(R \) and the curve \(C \) appearing in the line integral must give the entire boundary of \(R \), traveling in a counter-clockwise direction.

The easiest example of a line integral that can’t be part of Green’s theorem is to pick a non-closed curve, for example a straight line from \((0, 0)\) to \((1, 0)\).

(b) The divergence theorem applies when we have a solid bounded region \(T \) with a surface integral on \(S \), the entire boundary of \(T \) with an outer unit normal vector. In particular, the surface \(S \) must separate 3-dimensional space into an “inside” and an “outside”.

Therefore, an example of a surface that cannot be used with the divergence theorem would be a surface that does not separate in this sense like the top half of the unit sphere: \(x^2 + y^2 + z^2 = 1, \, z \geq 0 \).

We can sometimes use the divergence theorem with such nonqualifying surfaces by using trickery. Suppose that \(S \) is only part of the boundary of some solid region \(T \). Let’s
suppose that that entire boundary consists of S plus S_1. If we know the surface integral on S_1 and the triple integral of the divergence over T, then we can deduce the surface integral on S.

In the above example, the entire boundary of the half-ball $x^2 + y^2 + z^2 \leq 1$, $z \geq 0$ consists of S, the top half of the sphere, and S_1, the disk that spans the equator of the sphere, $x^2 + y^2 \leq 1$, $z = 0$. The integral of the divergence of \mathbf{F} over T equals the surface integral on S plus the integral on S_1. If the latter is easy to calculate, then we can obtain the surface integral on S.

(c) The surface integral appearing the Stokes’ theorem can be just about any surface integral. The only requirement is that the surface is bounded and has a unit normal vector \mathbf{n}. (The Möbius strip does not qualify. Don’t worry if you have never heard about this surface. It isn’t part of our course.) The line integral is over a curve C which bounds S. In particular, C must be a closed curve. (Stokes’ theorem is a generalization of Green’s theorem; so it has most of the same restrictions.) Of course, the direction of C must be compatible with the normal vector on S. In some weird cases, a closed curve does not bound any surface.

The easiest way to construct a non-qualifying curve is the same as for Green’s theorem. Pick any non-closed curve.