ETHIER & KURTZ NOTES 1:

Definition. Let A be a closed linear operator on L. A subspace D is said to be a core for A if $A|_D = A$.

Recall: \overline{B} (the closure of B) is the minimal closed extension of B. We proved last time that \overline{B} exists ("B is closable") if and only if the closure $\overline{G(B)}$ in $L \times L$ of $G(B)$ is the graph of a function, and characterised \overline{B} as the operator whose graph is $\overline{G(B)}$.

In particular, Lemma 2.11 stated that if B is dissipative and $D(B)$ is dense, then B is closable.

In the next proposition, we will use the Hille-Yoshida theorem to characterize cores of generators of sccsg’s.

3.1 Proposition. Let A be the generator of a strongly continuous contraction semigroup on L. Then a subspace D of $D(A)$ is a core for A if and only if D is dense in L and $R(\lambda - A|_D)$ is dense in L for some $\lambda > 0$.

Proof. Suppose D is dense and $R(\lambda - A|_D)$ is dense for some $\lambda > 0$. Then, since dissipativity of A implies dissipativity of $A|_D$, $A|_D$ satisfies the hypotheses of the Hille-Yoshida theorem (Theorem 2.12), hence $\overline{A|_D}$ exists and generates a semigroup $T^D(t)$. On the other hand, A generates a semigroup $T(t)$. We claim $\overline{A|_D}$ is extended by A (i.e., $D(\overline{A|_D}) \subset D(A)$ and $\overline{A|_D} f = Af$ for $f \in D(\overline{A|_D})$). This is clear since the Hille-Yoshida theorem and Lemma 2.2 imply that A is closed, and obviously the graph of A contains that of $A|_D$.

This result (that A extends $\overline{A|_D}$) is enough to show $\overline{A|_D} = A$ in the following way. We will see that it implies that the semigroups of these generators are the same. In fact, Proposition 2.10 shows that $T(t) = T^D(t)$ on $D(\overline{A|_D})$, hence by density of $D(\overline{A|_D})$ and strong continuity of $T(t)$ and $T^D(t)$, on all of L. From the definition of generator, it then follows that $A = \overline{A|_D}$, in the sense that their domains are equal and they agree on this domain. Hence D is a core for A.

Conversely, assume that D is a core for A, so that $A = \overline{A|_D}$. Obviously, $\overline{A|_D}$ is therefore the generator of a sccsg, so by the Hille-Yoshida theorem (2.12), $D(\overline{A|_D}) = D$ is dense and $R(\lambda - A|_D)$ is dense for some $\lambda > 0$. I have no clue why the authors cite Lemma 2.11 as being relevant to this!
For a sccsg $T(t)$ with generator A, the above theorem provides conditions for a subspace D to be a generator for A based on direct relations between A and D. On the other hand, the next theorem gives a sufficient condition for D to be a core for A based on a relation between $T(t)$, rather than A, and D.

(3.3 Proposition). Let A be the generator of a strongly continuous contraction semigroup $\{T(t)\}$ on L. Let D_0 and D be dense subspaces of L with $D_0 \subset D \subset D(A)$. (Usually, $D_0 = D$.) If $T(t) : D_0 \to D$ for all $t \geq 0$, then D is a core for A.

Remark: What is D_0 doing here? The presence of D_0 allows us to verify the condition $T : D_0 \to D$ rather than $T : D \to D$, for a smaller space D_0 than D, which is technically easier to do. For example, if D is some Sobolev space, instead of verifying that $T(t)$ preserves D (in case D may consist of poorly behaved functions which are hard to manipulate), we may instead take some subspace D_0 consisting of better behaved or very smooth functions for which it is easier to verify that $T(t) : D_0 \to D$. In particular, the theorem states that this will work with any D_0 which is dense and contained in D, so it may be to our advantage in applications to take D_0 as small as possible.

Proof. We shall reduce this to Proposition 3.1 above. Here is the idea. Since we already know that D is dense, by that proposition, we just have to show that $R(\lambda - A|_D)$ (which equals $R(\lambda - A)$ on D) is dense in L for some $\lambda > 0$. Proposition 2.1,

$$(\lambda - A)^{-1}g = \int_0^\infty e^{-\lambda t}T(t)g dt$$

tells us that the way to $\lambda - A$ is via the above integral, and by considering this integral as a limit of simple functions we will be able to use the conditions $T(t) : D_0 \to D$.

Now given $f \in D_0$, we define the simple approximants to the above integral by f_m by

$$f_n = \sum_{k=0}^{n^2} e^{-\lambda t/n}T\left(\frac{k}{n}\right)f \in D.$$

Applying $(\lambda - A)$ to both sides, using the linearity of T, taking limits, and applying the monotone convergence theorem, we get

$$\lim_{n \to \infty} (\lambda - A)f_n = \lim_{n \to \infty} \sum_{k=0}^{n^2} e^{-\lambda t/n}T\left(\frac{k}{n}\right)(\lambda - A)f \in D.$$