Some Results from Calculus

Rich Schwartz
January 29, 2015

1 Single Variable Functions

These notes prove some results about functions on \mathbb{R}^n. We’ll start with functions of a single variable.

Lemma 1.1 Let $g : \mathbb{R} \rightarrow \mathbb{R}$ be a differentiable function with $g(0) = 0$. Then

$$|g(A)| \leq A \times \sup_{x \in [0,A]} |g'(x)|.$$

Proof: This is an immediate consequence of the Fundamental Theorem of Calculus. Here is a proof from scratch. We will establish the more general statement that the inequality

$$(*) \quad |g(a) - g(b)| \geq (1 + \epsilon)|a - b| \sup_{x \in [a,b]} |g'(x)|$$

cannot hold for any $\epsilon > 0$ on any sub-interval $[a, b] \subset [0, A]$. If (*) holds for some interval I, then by the triangle inequality it also holds for one of the two intervals obtained by cutting I in half. But then (*) holds on a nested sequence $\{I_n\}$ of intervals, shrinking to a point x_0. This means that

$$\frac{|g(a_n) - g(b_n)|}{|a_n - b_n|} \geq (1 + \epsilon)|g'(x_0)|.$$

Here $I_n = [a_n, b_n]$. This contradicts the differentiability of g at x_0 once n is sufficiently large. ♠
2 Differentiability

A map \(f: \mathbb{R}^n \to \mathbb{R}^m\) is called differentiable at \(p\) if there is some linear map \(L: \mathbb{R}^n \to \mathbb{R}^n\) such that

\[
\lim_{{|h| \to 0}} \frac{|f(p + h) - f(p) - L(h)|}{|h|} = 0.
\]

Here \(h \in \mathbb{R}^n\) is a vector. In this case we write \(df(p) = L\). When \(f\) is differentiable at \(p\), the transformation \(L\) is the usual matrix of partial derivatives of \(f\), evaluated at \(p\).

Theorem 2.1 Suppose that \(f: \mathbb{R}^n \to \mathbb{R}^m\) is a function whose partial derivatives exist and are continuous. Then \(f\) is differentiable at all points.

Proof: Considering the coordinate functions separately, it suffices to consider the case \(m = 1\). Translating the domain and range, it suffices to prove this at 0, under the assumption that \(f(0) = 0\). (Here \(0 \in \mathbb{R}^n\) is shorthand for \((0, ..., 0)\).) Subtracting off a linear functional, we can assume that \(\partial_j f(0) = 0\) for all \(j\).

Let \(v\) be any unit vector. (Here we are thinking that \(h = tv\) in Equation 1.) Let \(h = tv = (h_1, ..., h_n)\). Define

\[
h_0 = (0, ..., 0), \quad h_1 = (h_1, 0, ..., 0), \quad h_2 = (h_1, h_2, 0, ..., 0), \cdots.
\]

We have some constant \(\epsilon_t\) so that \(|f_{x_j}| < \epsilon_t\) for all \(j\). Moreover, \(\epsilon_t \to 0\) as \(t \to 0\). Lemma 1.1 gives us

\[
|f(h_j) - f(h_{j-1})| \leq t \times \epsilon_t.
\]

Summing over \(j\), we get

\[
|f(h)| \leq nt \epsilon_t.
\]

Hence

\[
\frac{|f(h)|}{|h|} \leq \frac{|f(tv)|}{t} \leq \epsilon_t.
\]

This ratio goes to 0 as \(t \to 0\). This shows that \(f\) is differentiable at 0 and \(Df(0)\) is the 0 transformation. ♠
An Example: Choose any smooth 2π-periodic non-constant function $\psi(\theta)$ so that $\psi(k\pi/2) = 0$ for $k = 0, 1, 2, 3$. Now consider the function (in polar coordinates) $f(r, \theta) = r\psi(\theta)$. Also define $f = 0$ at the origin. This function is smooth except at the origin, and vanishes along the x-axis and y-axis. Hence f_x and f_y exist everywhere, and vanish at the origin. On the other hand, the restriction of f to some line through the origin is a nonzero linear function, meaning that some directional derivative of f at the origin is nonzero.

3 Another View of Differentiation

Define the dilation $D_r(p) = rp$. Consider the sequence of maps

$$f_r = D_r \circ f \circ D_{1/r}. \quad (2)$$

By construction, $f_r(v)$ converges to the directional (vector) derivative $D_v(f)$. Thus, f is differentiable at 0 if and only if $\{f_r\}$ converges, uniformly on compact subsets, to a linear map M. This linear map is precisely the matrix of partials $Df(0)$.

This observation leads to the following result.

Lemma 3.1 Suppose that $f : \mathbb{R}^n \to \mathbb{R}^n$ is a map with $f(0) = 0$. Suppose that f is invertible on the unit ball U, and $V = f(U)$ is an open set, and f is differentiable at 0. Then f^{-1} is differentiable at 0 and $D(f^{-1})(0) = (Df(0))^{-1}$.

Proof: Replacing f by Af for some linear map A, it suffices to consider the case when $Df(0)$ is the identity. In this case, the sequence $\{f_n\}$ converges uniformly on compact subsets to the identity map. Consider the functions

$$f_{n}^{-1} = D_n \circ f^{-1} \circ D_n. \quad (3)$$

Since V is an open set, the map f^{-1} is defined on the disk of radius ϵ about 0. Hence f_{n}^{-1} is defined on the disk of radius $n\epsilon$. In particular, these maps are eventually defined on any given compact subset K. Moreover, these maps converge to the identity. But then f^{-1} is differentiable at 0 and $D(f^{-1})$ is the identity. ♠
4 A Technical Result

In this section we assemble another ingredient for the Inverse Function Theorem. We call \(f \) \textit{nice} if \(f(0) = 0 \) and

\[
\|df(p) - I\| < 10^{-100}. \tag{3}
\]

for all vectors \(v \) with \(\|v\| < 10^{100} \). Here \(I \) is the identity matrix and the norm can be taken to mean the maximum absolute value of a matrix entry of \(df(p) - I \). One property a nice function has is that

\[
\|(p - q) - (f(p) - f(q))\| < \frac{\|p - q\|}{2}. \tag{4}
\]

for all \(p, q \) having norm less than \(10^{100} \). To prove this, we consider the segment \(\gamma \) connecting \(p \) to \(q \). Then \(f(\gamma) \) is a curve whose tangent vector is everywhere almost equal to \(p - q \).

\textbf{Lemma 4.1} Let \(f \) be a nice function. Let \(B_r \) denote the ball of radius \(r \) centered at the origin. Then \(B_1 \subset f(B_{10}) \).

\textbf{Proof:} If this is false, then there is some \(P \in B_1 - f(B_{10}) \). Note that \(f \) maps every point on the boundary of \(B_{10} \) at least, say, 8 units away from \(p \). For this reason, we can find some \(Q \in B_{10} \) such that

\[
P - f(Q) = \inf_{q \in B_{10}} P - f(q) > 0.
\]

But now consider the new point

\[
\overline{Q} = Q + (P - f(Q)).
\]

We compute

\[
P - f(\overline{Q}) = (\overline{Q} - Q) - (f(\overline{Q}) - f(Q)).
\]

From Equation 4 we get

\[
\|P - f(\overline{Q})\| < \|Q - \overline{Q}\|/2 = \|P - f(Q)\|/2.
\]

This is a contradiction, because \(f(\overline{Q}) \) is closer to \(P \) than is \(f(Q) \) and again \(\overline{Q} \in B_{10} \). \(\spadesuit \)
Say that \(f : \mathbb{R}^n \rightarrow \mathbb{R}^n \) is \(C^\infty \) if all partial derivatives of all orders exist for \(f \). Say that \(f \) is nonsingular at \(p \) if \(df(p) \) is invertible. Given open sets \(U, V \subset \mathbb{R}^n \) suppose \(f(U) = V \). Say that \(f \) is a diffeomorphism from \(U \) to \(V \) if \(f \) is a bijection and both \(f \) and \(f^{-1} \) are \(C^\infty \) and nonsingular at all points of their domains.

Theorem 5.1 (Inverse Function Theorem) Suppose that \(f \) is \(C^\infty \) and nonsingular at \(p \). Then there are open sets \(U \) and \(V \) with \(p \in U \) and \(f(p) \in V \) such that the map \(f : U \rightarrow V \) is a diffeomorphism.

Let \(||q|| \) denote the norm of a point \(q \). We can replace \(f \) by a composition of the form \(AfB \), where \(A \) and \(B \) are invertible affine maps, to arrange that:

- \(p = 0 \) and \(f(p) = 0 \).
- For all \(q \) with \(||q|| < 10^{100} \), we have \(||Df_q - I|| < 10^{-100} \).

Here \(I \) is the identity matrix.

Now let \(U \) be the unit disk and let \(V = f(U) \). We will verify all the desired properties through a series of lemmas.

Lemma 5.2 \(f \) is injective on \(U \).

Proof: for any \(q_1, q_2 \in U \), let \(\gamma \) be the line segment connecting \(q_1 \) to \(q_2 \). Consider the curve \(f(\gamma) \). By construction, the tangents \(f(\gamma) \) are nearly parallel equal to \(\gamma \). Hence \(\gamma \) cannot be a loop, and \(f(q_1) \neq f(q_2) \). \(\spadesuit \)

We also note that the argument above gives

\[
||f(q_2) - f(q_1)|| > \frac{||q_1 - q_2||}{2}.
\]
\(5 \)

Lemma 5.3 \(V \) is open.

Proof: choose some \(v_0 \in V \) and let \(u_0 \in U \) be such that \(f(u_0) = v_0 \). Composing \(f \) by translations and dilations, we can switch to the case when

- \(u_0 = v_0 = 0 \).
• f is nice.
• $B_{10} \subset U$.
• $B_1 \subset V$.

Then we can apply Lemma 4.1. ♠

Now we know that V open. Consider $f^{-1} : V \to U$. Equation 5 tells us immediately that f^{-1} is continuous. Lemma 3.1, together with symmetry, now tells us that f^{-1} is differentiable and $D(f^{-1}) = (Df)^{-1}$ at each point. Now we have the magic equation

$$Df^{-1}(q) = df \circ f^{-1}(q).$$

(6)

If we know that f^{-1} is k times differentiable, then by the chain rule Df^{-1} is k times differentiable. But then f^{-1} is $k + 1$ times differentiable. By induction f^{-1} is C^∞.