Integration & differentiation of power series

\[\sum_{n=0}^{\infty} a_n x^n = f(x) \leq \frac{1}{\epsilon} \sum_{n=0}^{\infty} |a_n| x^n \leq \frac{1}{\epsilon} \sum_{n=0}^{\infty} \frac{a_n}{|a_n|} x^n \]

Radius of convergence for series \(\sum_{n=0}^{\infty} a_n x^n \) coincides with \(R \).

\[\sum_{n=0}^{\infty} (a_n x^n) = \sum_{n=0}^{\infty} (a_n x^n)^n \] (for changing radius of convence)

\[\sum_{n=0}^{\infty} \frac{a_n}{|a_n|} x^n = \sum_{n=0}^{\infty} \frac{a_n}{|a_n|} x^n \]

Le Leibniz formula, time of a convergent sequence.

\[\sum_{n=0}^{\infty} a_n x^n \]

by definition 1, hence multiplex by \(x \), instead of multiplying by \(x \).

\[f(x) = \sum_{n=0}^{\infty} a_n x^n \]

\[F(x) = \sum_{n=0}^{\infty} a_n x^n \]

\[f(x) = \int f(x) \, dx \]

\[F(x) = \int F(x) \, dx \]

Term by term integration does not change radius of convergence.

Examples

- Power series for \(\ln(1+x) \)

\[\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \cdots \]

- Power series for \(\tan^{-1}(x) \)

\[\tan^{-1}(x) = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \cdots \]

Mean for Exam 2:

topic 66/66 (4)

Exam:

1. Un. (more info to come later)
2. Cut off for A. ≤ 60/65 for the course.

Instead of homework, review material and write down important facts.