1. Let

 \[A = \begin{pmatrix} 1 & 2 \\ 3 & 1 \end{pmatrix}, \quad B = \begin{pmatrix} 1 & 0 & 2 \\ 3 & 1 & -2 \end{pmatrix}, \quad C = \begin{pmatrix} 1 & -2 & 3 \\ -2 & 1 & -1 \end{pmatrix}, \quad D = \begin{pmatrix} -2 \\ 2 \\ 1 \end{pmatrix} \]

 a) Mark all the products that are defined, and give the dimensions of the result: \(AB, BA, ABC, ABD, BC, BC^T, B^T C, DC, D^T C^T \).

 b) Compute \(AB, A(3B + C), B^T A, A(BD), (AB)D \).

2. Let \(T_\gamma \) be the matrix of rotation by \(\gamma \) in \(\mathbb{R}^2 \). Check by matrix multiplication that \(T_\gamma T_{-\gamma} = T_{-\gamma} T_\gamma = I \).

3. Find the matrix of the orthogonal projection in \(\mathbb{R}^2 \) onto the line \(x_1 = -2x_2 \). **Hint:** What is the matrix of the projection onto the coordinate axis \(x_1 \)?

 You can leave the answer in the form of the matrix product, you do not need to perform the multiplication.

4. Find linear transformations \(A, B : \mathbb{R}^2 \to \mathbb{R}^2 \) such that \(AB = 0 \) but \(BA \neq 0 \).

5. Multiply two rotation matrices \(T_\alpha \) and \(T_\beta \) (it is a rare case when the multiplication is commutative, i.e. \(T_\alpha T_\beta = T_\beta T_\alpha \), so the order is not essential). Deduce formulas for \(\sin(\alpha + \beta) \) and \(\cos(\alpha + \beta) \) from here.