
1. True or false:
 a) The rank of a matrix equal to the number of its non-zero columns.
 b) The $m \times n$ zero matrix is the only $m \times n$ matrix having rank 0.
 c) Elementary row operations preserve rank.
 d) Elementary column operations do not necessarily preserve rank.
 e) The rank of a matrix is equal to the maximum number of linearly independent columns in the matrix.
 f) The rank of a matrix is equal to the maximum number of linearly independent rows in the matrix.
 g) The rank of an $n \times n$ matrix is at most n.
 h) An $n \times n$ matrix having rank n is invertible.

2. A 54×37 matrix has rank 31. What are dimensions of all 4 fundamental subspaces?

3. Compute rank and find bases of all four fundamental subspaces for the matrices

\[
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
1 & 1 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
1 & 2 & 3 & 1 & 1 \\
1 & 4 & 0 & 1 & 2 \\
0 & 2 & -3 & 0 & 1 \\
1 & 0 & 0 & 0 & 0
\end{pmatrix}
\]

4. Prove that if $A : X \to Y$ and V is a subspace of X then $\dim AV \leq \text{rank } A$. ($AV$ here means the subspace V transformed by the transformation A, i.e. any vector in AV can be represented as Av, $v \in V$). Deduce from here that $\text{rank}(AB) \leq \text{rank } A$.

Remark: Here one can use the fact that if $V \subset W$ then $\dim V \leq \dim W$. Do you understand why is it true?

5. Prove that if $A : X \to Y$ and V is a subspace of X then $\dim AV \leq \dim V$. Deduce from here that $\text{rank}(AB) \leq \text{rank } B$.

6. Prove that if the product AB of two $n \times n$ matrices is invertible, then both A and B are invertible. Even if you know about determinants, do not use them, we did not cover them yet. **Hint:** use previous 2 problems.