Homework assignment, March 5, 2004.

Due Monday, 3/8 (collected)

1. Suppose the permutation σ takes $(1, 2, 3, 4, 5)$ to $(5, 4, 1, 2, 3)$.
 a) Find sign of σ
 b) What does $\sigma^2 := \sigma \circ \sigma$ do to $(1, 2, 3, 4, 5)$?
 c) What does the inverse permutation σ^{-1} do to $(1, 2, 3, 4, 5)$?
 d) What is the sign of σ^{-1}?

2. Let P be a permutation matrix, i.e. an $n \times n$ matrix consisting of zeroes and ones and such that there is exactly one 1 in every row and every column.
 a) Can you describe the corresponding linear transformation? That will explain the name.
 b) Show that P is invertible. Can you describe P^{-1}?
 c) Show that for some $N > 0$
 \[P^N := PP \cdots P = I. \]
 Use the fact that there are only finitely many permutations.

3. Why is there an even number of permutations of $(1, 2, \ldots, 9)$ and why are exactly half of them odd permutations? **Hint:** this problem can be hard to solve in terms of permutations, but there is a very simple solution using determinants.

4. If σ is an odd permutation, explain why σ^2 is even but σ^{-1} is odd.

5. If the entries of both A and A^{-1} are integers, is it possible that $\det A = 3$? **Hint:** what is $\det(A) \det(A^{-1})$?

 The following problem illustrates relation between sign of determinant and the so-called orientation of a system of vectors.

6. Let v_1, v_2 be vectors in \mathbb{R}^2. Show that $D(v_1, v_2) > 0$ if and only if there exists a rotation T_α such that the vector $T_\alpha v_1$ is parallel to e_1 (and looking in the same direction), and $T_\alpha v_2$ is in the upper half-plane $x_2 > 0$ (the same half-plane as e_2).
 Hint: what is the determinant of a rotation matrix?
7. Compute the determinant of

$$A_4 = \begin{pmatrix}
0 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 \\
1 & 1 & 1 & 0
\end{pmatrix}.$$

Find also the determinants of smaller matrices A_3 and A_2 with the same pattern of zeroes on the diagonal and ones elsewhere. Can you predict $\det A_n$? Can you justify it?

8. Let A be an $n \times n$ matrix with entries $a_{j,k} = j + k$. Compute $\det A$ for all n.