1. Orthogonally diagonalize the matrix,

\[A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}. \]

Find all square roots of \(A \), i.e. find all matrices \(B \) such that \(B^2 = A \).

Note, that all square roots of \(A \) are self-adjoint.

3. True or false:
 a) A product of two self-adjoint matrices is self-adjoint.
 b) If \(A \) is self-adjoint, then \(A^k \) is self-adjoint.

Justify your conclusions

4. Let \(A \) be \(m \times n \) matrix. Prove that
 a) \(A^*A \) is self-adjoint.
 b) All eigenvalues of \(A^*A \) are non-negative.
 c) \(A^*A + I \) is invertible.

5. Give a proof if the statement is true, or give a counterexample if it is false;
 a) If \(A = A^* \) then \(A + iI \) is invertible.
 b) If \(U \) is unitary, \(U + \frac{3}{4}I \) is invertible
 c) If a matrix \(A \) is real, \(A - iI \) is invertible

6. Let \(U \) be a \(2 \times 2 \) orthogonal matrix with \(\det U = 1 \). Prove that \(U \) is a rotation matrix.
7. Let U be a 3×3 orthogonal matrix with $\det U = 1$. Prove that

a) 1 is an eigenvalue of U;

b) If $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3$ is an orthonormal basis, such that $U\mathbf{v}_1 = \mathbf{v}_1$ (remember, that 1 is an eigenvalue), then in this basis the matrix of U is

$$
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix},
$$

where α is some angle.

Hint: Show, that since \mathbf{v}_1 is an eigenvector of U, all entries below 1 must be zero, and since \mathbf{v}_1 is also an eigenvector of U^* (why?), all entries right of 1 also must be zero. Then show that the lower right 2×2 matrix is an orthogonal one with determinant 1, and use the previous problem.