Homework assignment, April 26, 2004.

Due Wednesday, 4/28 (collected)

1. Find singular value decomposition $A = W \Sigma V^*$ where V and W are unitary matrices for the following matrices
 a) $A = \begin{pmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{pmatrix}$
 b) $A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & -2 \end{pmatrix}$

2. Find singular value decomposition of the matrix

 $A = \begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$

 Find
 a) $\max_{\|x\| \leq 1} \|Ax\|$ and the vectors where the maximum is attained.
 b) $\min_{\|x\| \leq 1} \|Ax\|$ and the vectors where the minimum is attained.
 c) the image $A(B)$ of the closed unit ball in \mathbb{R}^2, $B = \{x \in \mathbb{R}^2 : \|x\| \leq 1\}$. Describe $A(B)$ geometrically.

3. True or false
 a) Singular values of a matrix are also eigenvalues of the matrix.
 b) Singular values of a matrix A are eigenvalues of A^*A.
 c) If s is a singular value of a matrix A and c is a scalar, then $|c|s$ is a singular value of cA.
 d) The singular values of any linear operator are non-negative.
 e) Singular values of a self-adjoint matrix coincide with its eigenvalues.

4. Let A be an $m \times n$ matrix. Prove that non-zero eigenvalues of the matrices A^*A and AA^* (counting multiplicities) coincide.
 Can you say when zero eigenvalue of A^*A and zero eigenvalue of AA^* have the same multiplicity?
5. Let s be the largest singular value of an operator A, and let λ be the eigenvalue of A with largest absolute value. Show that $|\lambda| \leq s$.