1. Orthogonally diagonalize the matrix,

\[A = \begin{pmatrix} 3 & 2 \\ 2 & 3 \end{pmatrix}. \]

Find all square roots of \(A \), i.e. find all matrices \(B \) such that \(B^2 = A \).

Note, that all square roots of \(A \) are self-adjoint.

Solution: \(A = U D U^* \) where

\[D = \begin{pmatrix} 5 & 0 \\ 0 & 1 \end{pmatrix}, \quad U = \frac{\sqrt{2}}{2} \begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix} \]

Square roots:

\[U \begin{pmatrix} \pm \sqrt{5} & 0 \\ 0 & \pm 1 \end{pmatrix} U^* \]

False, the square root of

\[\begin{pmatrix} -1 & 0 \\ 0 & 1 \end{pmatrix} \]

are matrices

\[\begin{pmatrix} \pm i & 0 \\ 0 & \pm 1 \end{pmatrix} \]

none of which is self-adjoint

3. True or false:

a) A product of two self-adjoint matrices is self-adjoint.

False, consider the product

\[\begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 3 \\ 3 & 1 \end{pmatrix} \]

b) If \(A \) is self-adjoint, then \(A^k \) is self-adjoint.

True, \((A^k)^* = (A^*)^k = A^k \)

Justify your conclusions

4. Let \(A \) be \(m \times n \) matrix. Prove that
a) A^*A is self-adjoint.

\[(A^*A)^* = A^*A^{**} = A^*A.\]

b) All eigenvalues of A^*A are non-negative.

Let $Ax = \lambda x$. Then $(A^*Ax, x) = (\lambda x, x) = \lambda \|x\|^2$. On the other hand, $(A^*x, Ax) = \|Ax\|^2 \geq 0$. So, $\lambda \|x\|^2 \geq 0$ and therefore $\lambda \geq 0$ (note that $\|x\| > 0$).

c) $A^*A + I$ is invertible. By the previous problem all eigenvalues must be non-negative, so -1 is not an eigenvalue.

5. Give a proof if the statement is true, or give a counterexample if it is false;

a) If $A = A^*$ then $A + iI$ is invertible.

b) If U is unitary, $U + \frac{3}{4}I$ is invertible

c) If a matrix A is real, $A - iI$ is invertible

6. Let U be a 2×2 orthogonal matrix with $\det U = 1$. Prove that U is a rotation matrix.

Let u_1 be the first column of U. Since $\|u_1\| = 1$ it can be written as $u = (\cos \alpha, \sin \alpha)^T$ for some α. Any vector x orthogonal to u_1 is a multiple of $(-\sin \alpha, \cos \alpha)^T$ (solve the equation $u_1^T x = 0$).

The second column u_2 of U must be orthogonal to u_1 and has unit norm. So, there are only two possibilities, $u_2 = \pm (-\sin \alpha, \cos \alpha)^T$. But only $u_2 = (-\sin \alpha, \cos \alpha)^T$ gives $\det U = 1$, the other choice gives $\det U = -1$.

7. Let U be a 3×3 orthogonal matrix with $\det U = 1$. Prove that

a) 1 is an eigenvalue of U;

b) If v_1, v_2, v_3 is an orthonormal basis, such that $Uv_1 = v_1$ (remember, that 1 is an eigenvalue), then in this basis the matrix of U is

\[
\begin{pmatrix}
1 & 0 & 0 \\
0 & \cos \alpha & -\sin \alpha \\
0 & \sin \alpha & \cos \alpha
\end{pmatrix},
\]

where α is some angle.

Hint: Show, that since v_1 is an eigenvector of U, all entries below 1 must be zero, and since v_1 is also an eigenvector of U^* (why?), all entries right of 1 also must be zero. Then show that the lower right 2×2 matrix is an orthogonal one with determinant 1, and use the previous problem.