Ergodicity of Markov processes: theory and computation

Yao Li

Department of Mathematics and Statistics, University of Massachusetts Amherst

September 9, 2021

ICERM, Brown University

Outline

- Markov processes on measurable state space.
- Coupling method and renewal theory
- Exponential and power-law ergodicity
- Construction of Lyapunov functions
- Numerical computation of ergodicity
- Numerical computation of invariant probability measures

Basic setting 1

- \bullet Φ_n discrete time Markov process
- $(X, \mathcal{B}(X))$ state space with a sigma algebra $\mathcal{B}(X)$
- **③** P transition probability. $P(x, A) = \mathbb{P}[\Phi_1 \in A \mid \Phi_0 = x]$.
- **②** $P(x, \cdot)$ is a probability measure on $(X, \mathcal{B}(X))$, P(x, A) is a measurable function for any $A \in \mathcal{B}$.
- By Markov property, this is enough to determine a Markov process

Basic setting 2

Markov property: only depends on the nearest history

$$\mathbb{P}[\Phi_{n+1} \in A \,|\, \Phi_0, \cdots, \Phi_n] = \mathbb{P}[\Phi_{n+1} \in A \,|\, \Phi_n]$$

 $P^m(x,A) = \mathbb{P}[\Phi_{n+m} \in A \mid \Phi_n = x].$

•

$$P^{m+n}(x,A) = \int_X P^n(y,A) P^m(x,dy)$$

- First arrival time: $\eta_A = \inf_{n \geq 1} \{ \Phi_n \in A \}$
- Note that η_A is a stopping time (random time that only depends on historical and present states of Φ_n .)
- Hitting probability: $L(x, A) = \mathbb{P}[\Phi_n \in A \text{ for some } n | \Phi_0 = x]$

Irreducibility

Main difference from discrete Markov chain: P(x, y) does not make sense any more!

 Φ_n is irreducible if there exists a reference measure ψ on X such that

- If $\psi(A) > 0$, then L(x, A) > 0 for all $x \in X$
- ② If $\psi(A) = 0$, then $\psi(\{y : L(y, A) > 0\}) = 0$

 Φ_n can reach everywhere that could be "seen" by ψ .

Example

Stochastic differential equation X_t . Euler-Maruyama method.

$$X_{n+1} = X_n + f(X_n)h + \sigma(X_n)\mathcal{N}(0,1)\sqrt{h}$$

Transition kernel

$$P(x,A) = \int_A \frac{1}{\sqrt{2\pi\sigma(x)^2 h}} e^{-(y-x-f(x)h)^2/2\sigma^2(x)h} dy$$

Let Lebesgue measure be the reference measure. Easy to check that X_n is irreducible.

Atom and pseudo-atom

- ① Discrete state space: P(x, y) > 0. Very useful!
- **②** Atom: α is an atom if $P(x, \cdot) = P(y, \cdot)$ for all $x, y \in \alpha$. Atom is like a discrete state.
- Atom usually does not exist
- Pseudo-atom: small set C
- **⊙** $C \in \mathcal{B}(X)$ is a small set if there exist an integer $n \in \mathbb{N}$ and a nontrivial measure ν such that

$$P^n(x,A) \ge \nu(A)$$
 for all $x \in C$

Example

Euler-Maruyama scheme again

$$X_{n+1} = X_n + f(X_n)h + \sigma(X_n)\mathcal{N}(0,1)\sqrt{h}$$

Every bounded set is a small set because the probability density of P is everywhere strictly positive.

Random walk: $X_{n+1}=X_n+U_n$, $U_n\sim U(-1/2,1/2)$. $[-1/4\,,\,1/4]$ is a small set with n=1 and $\nu=$ Lebesgue measure.

(A)periodicity

Discrete space

Assume irreducibility. Define $E = \{n \mid P^n(x, x) > 0\}$. Period d is the greatest common divisor of E.

General space

Assume irreducibility. C is a small set. Define

$$E_C = \{ n \mid P^n(x, \cdot) \ge \nu(\cdot), x \in C, \nu(C) > 0 \}$$

(positive probability that the chain will return to C after n steps.) Period d is the greatest common divisor of E.

 Φ_n is aperiodic if d=1.

Ergodicity

From now on we assume that Φ_n is irreducible and aperiodic.

- Left operator: μ probability measure. $\mu P^n(A) = \mathbb{P}_{\mu}[\Phi_n \in A]$.
- **2** Right operator: f observable (function). $P^n f(x) = \mathbb{E}_x[f(\Phi_n)]$.
- **1** Invariant probability measure. π is said to be invariant if $\pi P = \pi$.

Let μ and ν be two probability measures. Does

$$\|\mu P^n - \nu P^n\|_{TV}$$

converge to zero? If yes, how fast??

Main approach: Coupling

A Markov process (Φ_n^1, Φ_n^2) on the state space $X \times X$ is said to be a Markov coupling if

- Two marginal distributions are Markov processes Φ_n with initial distribution μ and ν , respectively
- ② If $\Phi_n^1 = \Phi_n^2$, then $\Phi_m^1 = \Phi_m^2$ for all $m \ge n$.

 $\tau_C = \inf_{n \geq 0} \{ \Phi_n^1 = \Phi_n^2 \}$ is the *coupling time*.

Coupling Lemma

Coupling Lemma

$$\|\mu P^n - \nu P^n\|_{TV} \le 2\mathbb{P}[\tau_C > n].$$

(See whiteboard for the proof.)

Optimal coupling (Pitman 1970s)

There exists a coupling (Φ_n^1, Φ_n^2) (may not be Markov) such that

$$\|\mu P^n - \nu P^n\|_{TV} = 2\mathbb{P}[\tau_C > n].$$

The existence of "honest" optimal coupling remains open.

Coupling at atom

- **1** Assume Φ_n admits an atom α .
- ② Let (Φ_n^1, Φ_n^2) be a coupling such that Φ_n^1 and Φ_n^2 are independent until their first simultaneous visit to α , and run together after that.

Easy to check: (Φ_n^1, Φ_n^2) is a Markov coupling.

Difficulty: property of $\mathbb{P}[\tau_C > n]$?

- ② Exponential: $\mathbb{P}[\tau_C > n] \sim \rho^{-n}$ for $\rho > 1$
- ② Power-law: $\mathbb{P}[\tau_C > n] \sim n^{-\beta}$ for $\beta > 0$

Renewal process

Let

$$S_n = \sum_{i=0}^n Y_i$$

such that Y_1, Y_2, \cdots are i.i.d. random nonnegative integers. (Y_0 could be different). S_n is a renewal process. Y_i is called inter-occurrence time.

Let $u_n = \mathbb{P}[n = S_m \text{ for some m}].$ If S is aperiodic, $u_n \to 1/\mathbb{E}[Y_1].$

Renewal process from Φ_n

- \mathbf{Q} α is the atom.
- $Y_0 = \eta_\alpha$
- **3** S_n is the *n*-th visit to α

Simultaneous renewal

- Now let S_n and S'_n be two renewal processes corresponding to Φ^1_n and Φ^2_n , respectively.
- ② The coupling time τ_C is the first simultaneous renewal time.

$$\tau_C = \inf_n \{ n = S_{k_1} = S'_{k_2} \text{ for some } k_1 \text{ and } k_2 \}$$

Three questions

- 1 What if there is no atom? ✓
- 2 First simultaneous renewal time? ✓
- 3 How to estimate the first visit time η_{α} (probably tomorrow)

How to make an atom? (1)

- Atom does not exist in most scenarios
- Small set is much easier to get
- \odot Simplest case. Let C be a small set that satisfies

$$P(x, A) \ge \delta \mathbf{1}_{C}(x)\nu(A)$$
 , $A \in \mathcal{B}(X), x \in X$,

where ν is a probability measure with $\nu(C) = 1$.

- Split X into $\hat{X} = X \times \{0,1\}$ with $X_0 = X \times \{0\}$ and $X_1 = X \times \{1\}$.
- \odot Similarly, split A into A_0 and A_1

How to make an atom? (2)

① Let λ be a measure on X. Split λ into $\hat{\lambda}$ on \hat{X} such that

$$\lambda^*(A_0) = \lambda(A \cap C)(1 - \delta) + \lambda(A \cap C^c)$$

$$\lambda^*(A_1) = \lambda(A \cap C)\delta$$

- lacksquare In other words, $\lambda^*(A_0 \cup A_1) = \lambda(A)$
- **3** Split transition kernel P into \hat{P} :

$$\hat{P}(x,\cdot) = P(x,\cdot)^* \quad x \in X_0 \setminus C_0$$

$$\hat{P}(x,\cdot) = (1-\delta)^{-1} [P(x,\cdot)^* - \delta \nu^*(\cdot)] \quad x \in C_0$$

$$\hat{P}(x,\cdot) = \nu^*(\cdot) \quad x \in C_1$$

How to make an atom? (3)

- **1** A Markov process $\hat{\Phi}_n$ is defined on \hat{X} with transition probability \hat{P} .
- \circ C_1 becomes an atom.
- 0 Most result (irreducibility, aperiodicity, recurrence etc.) still holds for $\hat{\Phi}_n$

First simultaneous renewal time?

- $Y_1, Y_1, Y_2, Y_2, \cdots$ are i.i.d. with distribution $\eta_{\alpha} \|_{\Phi_0 = \alpha}$
- Let T be the simultaneous renewal time

$$T = \inf_{n} \{ n = S_{k_1} = S'_{k_2} \text{ for some } k_1, k_2 \}$$

o From renewal theorem: There exist n_0 and c such that

$$\mathbb{P}[n \text{ is a renewal time }] = \mathbb{P}[n = S_k \text{ for some } k] \geq c$$
 for all $n > n_0$.

Theorems

Exponential tail

If $\mathbb{E}[\rho_1^{Y_0}], \mathbb{E}[\rho_1^{Y_0}], \mathbb{E}[\rho_1^{Y_1}] < \infty$ for some $\rho_1 > 1$, then there exists $\rho_0 > 1$ such that $\mathbb{E}[\rho_0^T] < \infty$.

Power-law tail

If $\mathbb{E}[Y_0^{\beta}], \mathbb{E}[(Y_0)^{\beta}], \mathbb{E}[Y_1^{\beta}] < \infty$ for some $\beta > 0$, then $\mathbb{E}[T^{\beta}] < \infty$.

(Note that finite exponential/power-law moment is equivalent to exponential/power-law tail.)

Proof on whiteboard.

Ref: Lectures on the Coupling Method by Torgny Lindvall

Thank you