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© Markov processes on measurable state space.
@ Coupling method and renewal theory

@ Exponential and power-law ergodicity

@ Construction of Lyapunov functions

@ Numerical computation of ergodicity

@ Numerical computation of invariant probability measures
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@ &, — discrete time Markov process

@ (X,B(X)) — state space with a sigma algebra B(X)

@ P - transition probability. P(x, A) =P[®; € A| g = x].

@ P(x,-) is a probability measure on (X, B(X)), P(x,A) is a
measurable function for any A € B.

@ By Markov property, this is enough to determine a Markov
process
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Markov property: only depends on the nearest history

P, 1€ A|dg, -, Pp] =P[®,1 € A| D]

P™(x, A) = P[®pim € Al p = .

P ) = | P AP 0)
X

First arrival time: na = inf,>1{®, € A}

Note that 74 is a stopping time (random time that only
depends on historical and present states of ®,,.)

Hitting probability: L(x, A) = P[®, € A for some n| $y = X|
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Irreducibility

Main difference from discrete Markov chain: P(x, y) does not make
sense any more!

®, is irreducible if there exists a reference measure ¥ on X such
that
Q If Y(A) > 0, then L(x, A) > 0 for all xe X

Q If ¥(A) =0, then ¥({y: L(y,A) >0})=0

®,, can reach everywhere that could be “seen” by .

Yao Li Ergodicity of Markov processes: theory and computation




Stochastic differential equation X;. Euler-Maruyama method.
Xn+1 = Xp+ f(Xn)h + U(Xn)N(O, 1)\/E
Transition kernel

(=X Mn2 /202(9h g,

1
Pl A) = /A \2ma(x)2h

Let Lebesgue measure be the reference measure. Easy to check
that X, is irreducible.
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Atom and pseudo-atom

© 00

Discrete state space: P(x,y) > 0. Very useful!

Atom: « is an atom if P(x,-) = P(y,-) for all x,y € a. Atom
is like a discrete state.

Atom usually does not exist
Pseudo-atom: small set C

C € B(X) is a small set if there exist an integer n € N and a
nontrivial measure v such that

P"(x,A) > v(A) for all xe C
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Euler-Maruyama scheme again
Xni1 = Xp + AXo)h+ o(X,)N(0,1)Vh

Every bounded set is a small set because the probability density of
P is everywhere strictly positive.

Random walk: X,11 = X, + Uy, Uy ~ U(—1/2,1/2).
[—1/4, 1/4] is a small set with n =1 and v = Lebesgue measure.
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(A)periodicity

Assume irreducibility. Define E= {n| P"(x, x) > 0}. Period d is
the greatest common divisor of E.

General space

Assume irreducibility. Cis a small set. Define
Ec={n|P'(x,-) > v(:),xe C,v(C) > 0}

(positive probability that the chain will return to C after n steps.)
Period d is the greatest common divisor of E.

&, is aperiodic if d = 1.
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Ergodicity

From now on we assume that ®,, is irreducible and aperiodic.

@ Left operator: p— probability measure. pP"(A) =P,[®, € A].
@ Right operator: f— observable (function). P"f(x) = E.[f(®,)].

@ Invariant probability measure. 7 is said to be invariant if
P =m.

Let 1 and v be two probability measures. Does

P = Py

converge to zero? If yes, how fast??
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Main approach: Coupling

A Markov process (®1, ®2) on the state space X x X is said to be
a Markov coupling if

@ Two marginal distributions are Markov processes ¢, with
initial distribution 1 and v, respectively

Q If ®L = d2, then ®L = d2 for all m > n.

7c = inf >0 {®L = ®2} is the coupling time.
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Coupling Lemma

Coupling Lemma

||,U,Pn = I/PnHT\/S 2P[TC > n] .

(See whiteboard for the proof. )

Optimal coupling (Pitman 1970s)

There exists a coupling (®1, ®2) (may not be Markov) such that

|uP" — vP"||7v = 2P[rc > n].

The existence of “honest” optimal coupling remains open.
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Coupling at atom

@ Assume ¥, admits an atom «.

@ Let (d}, 2) be a coupling such that ®} and ®2 are
independent until their first simultaneous visit to «, and run
together after that.

Easy to check: (®1 ®2) is a Markov coupling.
Difficulty: property of P[r¢ > n|?

@ Exponential: P[rc > n] ~ p~" for p > 1
@ Power-law: P[r¢ > n] ~ n~# for 3 >0
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Renewal process

Let

such that Y7, Ys,--- arei.i.d. random nonnegative integers. (Yo
could be different). S, is a renewal process. Y; is called
inter-occurrence time.

Let u, = P[n = S,, for some m].
If S'is aperiodic, u, — 1/E[Y;].

Yao Li Ergodicity of Markov pr : theory and computation



Renewal process from &,

@ o is the atom.
Q@ Yo= T
@ S, is the n-th visit to «

@ S, is a renewal process because « is an atom. Y; = 1q|ey=a-
(Markov property: history is independent of the future.)
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Simultaneous renewal

@ Now let S, and S, be two renewal processes corresponding to
@l and ®2, respectively.

nt

@ The coupling time 7¢ is the first simultaneous renewal time.

Tc= ir))f{n = S, = S}, for some ki and ky}

Three questions

1 What if there is no atom? v
2 First simultaneous renewal time? v

3 How to estimate the first visit time 7, (probably tomorrow)
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How to make an atom? (1)

@ Atom does not exist in most scenarios
@ Small set is much easier to get

@ Simplest case. Let C be a small set that satisfies
P(x,A) > d1lc(x)v(A) , AeB(X),xe X,

where v is a probability measure with v(C) = 1.

@ Split X into X = X x {0,1} with Xo = X x {0} and
X; = X x {1}.

@ Similarly, split A into Ag and Ay
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How to make an atom? (2)

@ Let )\ be a measure on X. Split A into X on X such that
A (A) =AMANO)(1—0)+ MANC)
A (A1) =MAN Q)

@ In other words, \*(Ag U A1) = A(A)
@ Split transition kernel P into P

IAD(X7 ) =P(x,)" xeXo\ G
P(x,-) = (1=08)"YP(x,-)* —ov*()] xe G

P(x,) =v*() xeC
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How to make an atom? (3)

@ A Markov process C?),, is defined on X with transition
probability P.

@ (i becomes an atom.

@ Most result (irreducibility, aperiodicity, recurrence etc. ) still
holds for ¢,
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First simultaneous renewal time?

QS =Yo+Yit+t - +YnS=Y+Y+ 1Y

n
Q@ Yo= 77a|¢0~/u Vo = 77a|<l>o~u
Q Y1,Y,, Y, Y, - areiid. with distribution 74 |le,=a

@ Let T be the simultaneous renewal time
T= ir),f{n = S, = S}, for some ki, ko}
© From renewal theorem: There exist ng and ¢ such that
P[n is a renewal time | = P[n = Sy for some k] > ¢

for all n > ng.
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Theorems

Exponential tail

If E[pr"],E[pr"’],E[p}ﬁ] < oo for some p; > 1, then there exists
po > 1 such that E[pd] < oc.

Power-law tail

If E[YZ], E[(Y})?], E[YY] < oo for some 3 > 0, then E[T?] < oo.

(Note that finite exponential /power-law moment is equivalent to
exponential /power-law tail.)
Proof on whiteboard.

Ref: Lectures on the Coupling Method by Torgny Lindvall
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Thank you




