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The tropical semiring consists of the real numbers equipped with two
operations

a⊕ b = min(a, b) and a� b = a + b.

Example:

3⊕ 4 = 3 and 3� 4 = 7.

“Motivation”

(x3 + higher terms) + (x4 + higher terms) = (x3 + higher terms)
(x3 + higher terms) · (x4 + higher terms) = (x7 + higher terms)



We can do tropical linear algebra, for example
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A symmetric matrix has symmetric rank k if it is the tropical sum of k
symmetric rank 1 matrices, but no fewer.

Can we always find such a sum? How many rank 1 matrices are required?
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Classically,

Secantk(Segre) ∩ Lsym = Secantk(Segre ∩ Lsym).

That is, a symmetric matrix of rank k can be written as a sum of k
SYMMETRIC matrices of rank 1.

For higher dimensional arrays, this is only conjecturally true:

Comon’s Conjecture (2009): the rank of an order k , dimension n
symmetric tensor over C equals its symmetric rank.

some cases proven by Comon-Golub-Lim-Mourrain (2008):

Symmetric tensor decomposition is important in signal processing,
independent component analysis, ...
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“Tropical Comon’s Conjecture:” rank equals symmetric rank, tropically?

In fact, symmetric rank may not even be finite
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What about when symmetric rank is finite? How large can it be? Surely
it is bounded above by the dimension of the matrix?
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n 1 2 3 4
maximum (finite)

symmetric rank 1 2 3 4
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n 1 2 3 4 5 6 7 8 9 10 · · ·
maximum (finite)

symmetric rank 1 2 3 4 6 9 12 16 20 25 · · ·
0 1 0 0 0
1 0 0 0 0
0 0 0 1 1
0 0 1 0 1
0 0 1 1 0

 =


0 · 0 · 0
· · · · ·
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· · · · ·
0 · · · 0

⊕ · · · ⊕ · · ·

CLIQUE COVER problem: express a given graph as a union of cliques. In
each rank 1 summand, the off-diagonal zeroes form a clique in the zero
graph, and these must cover the zero graph of the original matrix.

A graph on n nodes can require up to b n2

4 c cliques to cover it; this bound
is attained by Kb n

2 c,d
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Theorem (Cartwright-C 2009) For n ≥ 4, bn2/4c is the maximum finite
symmetric rank of an n × n matrix.

Similarly, the tropical Comon conjecture is false for higher dimensional
symmetric tensors (graphs → hypergraphs).
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What about the set of matrices of symmetric rank ≤ k? It is a
polyhedral fan (Develin 2006). What is its dimension?

Why is this even a good question?

Definition
The k th tropical secant set of a subset V ⊆ Rn is the set

Seck(V ) := {v1 ⊕ · · · ⊕ vk : vi ∈ V } ⊆ Rn.

Ex.
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For nice varieties, Seck(Trop V ) ( Trop(Seck V ); the sets are generally
far from equal. But are their dimensions equal?
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Nonexamples: none known! (Draisma 2007 question/conjecture)

Moral: for irreducible varieties, tropical secant sets give lower bounds,
and maybe even equalities, for the dimensions of classical secant varieties.
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The tropical Grassmannian Gr(2, n) is the set of n × n dissimilarity
matrices satisfying the 3-term tropical Plücker relations: for all
i < j < k < l ,

min{pij + pkl , pik + pjl , pil + pjk}

is attained twice.

M =


∗ 1 1 1 1
1 ∗ 2 2 2
1 2 ∗ 3 3
1 2 3 ∗ 4
1 2 3 4 ∗

 , Mij = min(i , j)

Equivalently, it comes from pairwise cost-of-travel along a weighted tree
on n nodes.
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Equivalently, it comes from pairwise cost-of-travel along a weighted tree
on n nodes.

Tree mixtures studied in phylogenetics by Matsen-Mossel-Steel, Cueto



Question: Can you find a 5× 5 dissimilarity matrix with tree rank 3?
(How can we prove lower bounds on rank in general?)

Theorem (Cartwright-C 2009) The set of dissimilarity matrices of tree
rank 3 consists of those points such that the minimum below is achieved
uniquely, and at a blue term.

x12x13x24x35x45 ⊕ x12x13x25x34x45 ⊕ x12x14x23x35x45 ⊕ x12x14x25x34x35 ⊕ x12x15x23x34x45 ⊕ x12x15x24x34x35

⊕ x13x14x23x25x45 ⊕ x13x14x24x25x35 ⊕ x13x15x23x24x45 ⊕ x13x15x24x25x34 ⊕ x14x15x23x25x34 ⊕ x14x15x23x24x35

⊕ x12x13x23x2
45 ⊕ x12x14x24x2

35 ⊕ x12x15x25x2
34 ⊕ x13x14x34x2

25 ⊕ x13x15x35x2
24 ⊕ x14x15x45x2

23 ⊕ x23x24x34x2
15

⊕ x23x25x35x2
14 ⊕ x24x25x45x2

13 ⊕ x34x35x45x2
12


∗ 0 1 1 0
0 ∗ 0 1 1
1 0 ∗ 0 1
1 1 0 ∗ 0
0 1 1 0 ∗

 =


∗ 0 ≥1 ≥1

∗ ≥0 ≥1
∗ 0

∗
∗

⊕· · ·⊕· · ·
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Theorem The chromatic number of the “conflict” hypergraph is a lower
bound for rank.

Does this bound tell the truth?

I yes for tree rank on n ≤ 5 taxa,

I no in general, but

Theorem In the case of a toric ideal and a universal Gröbner basis, the
bound above is an equality.

Thank you!

arxiv:0912.1411v1
mtchan@math.berkeley.edu
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