Notes on Tensor Products

Rich Schwartz

May 3, 2014

1 Modules

Basic Definition: Let R be a commutative ring with 1. A (unital) R-module is an abelian group M together with a operation $R \times M \rightarrow M$, usually just written as $r v$ when $r \in R$ and $v \in M$. This operation is called scaling. The scaling operation satisfies the following conditions.

1. $1 v=v$ for all $v \in M$.
2. $(r s) v=r(s v)$ for all $r, s \in R$ and all $v \in M$.
3. $(r+s) v=r v+s v$ for all $r, s \in R$ and all $v \in M$.
4. $r(v+w)=r v+r w$ for all $r \in R$ and $v, w \in M$.

Technically, an R-module just satisfies properties $2,3,4$. However, without the first property, the module is pretty pathological. So, we'll always work with unital modules and just call them modules. When R is understood, we'll just say module when we mean unital R-module.

Submodules and Quotient Modules: A submodule $N \subset M$ is an abelian group which is closed under the scaling operation. So, $r v \in N$ provided that $v \in N$. A submodule of a module is very much like an ideal of a ring. One defines M / N to be the set of (additive) cosets of N in M, and one has the scaling operation $r(v+N)=(r v)+N$. This makes M / N into another R-module.

Examples: Here are some examples of R-modules.

- When R is a field, an R-module is just a vector space over R.
- The direct product $M_{1} \times M_{2}$ is a module. The addition operation is done coordinate-wise, and the scaling operation is given by

$$
r\left(v_{1}, v_{2}\right)=\left(r v_{1}, r v_{2}\right)
$$

More generally, $M_{1} \times \ldots \times M_{n}$ is another R-module when M_{1}, \ldots, M_{n} are.

- If M is a module, so is the set of finite formal linear combinations $L(M)$ of elements of M. A typical element of $L(M)$ is

$$
r_{1}\left(v_{1}\right)+\ldots+r_{1}\left(v_{n}\right), \quad r_{1}, \ldots, r_{n} \in R, \quad v_{1}, \ldots, v_{n} \in M
$$

This definition is subtle. The operations in M allow you to simplify these expressions, but in $L(M)$ you are not allowed to simplify. Thus, for instance, $r(v)$ and $1(r v)$ are considered distinct elements if $r \neq 1$.

- If $S \subset M$ is some subset, then $R(S)$ is the set of all finite linear combinations of elements of S, where simplification is allowed. With this definition, $R(S)$ is a submodule of M. In fact, $R(S)$ is the smallest submodule that contains S. Any other submodule containing S also contains $R(S)$. As with vector spaces, $R(S)$ is called the span of S.

2 The Tensor Product

The tensor product of two R-modules is built out of the examples given above. Let M and N be two R-modules. Here is the formula for $M \otimes N$:

$$
\begin{equation*}
M \otimes N=Y / Y(S), \quad Y=L(M \times N) \tag{1}
\end{equation*}
$$

and S is the set of all formal sums of the following type:

1. $(r v, w)-r(v, w)$.
2. $(w, r v)-r(v, w)$.
3. $\left(v_{1}+v_{2}, w\right)-\left(v_{1}, w\right)-\left(v_{2}, w\right)$.
4. $\left(v, w_{1}+w_{2}\right)-\left(v, w_{1}\right)-\left(v, w_{2}\right)$.

Our convention is that (v, w) stands for $1(v, w)$, which really is an element of $L(M \times N)$. Being the quotient of an R-module by a submodule, $M \otimes N$ is another R-module. It is called the tensor product of M and N.

There is a map $B: M \times N \rightarrow M \otimes N$ given by the formula

$$
\begin{equation*}
B(m, n)=[(m, n)]=(m, n)+Y(S), \tag{2}
\end{equation*}
$$

namely, the $Y(S)$-coset of (m, n). The traditional notation is to write

$$
\begin{equation*}
m \otimes n=B(m, n) \tag{3}
\end{equation*}
$$

The operation $m \otimes n$ is called the tensor product of elements.
Given the nature of the set S in the definition of the tensor product, we have the following rules:

1. $(r v) \otimes w=r(v \otimes w)$.
2. $r \otimes(r w)=r(v \otimes w)$.
3. $\left(v_{1}+v_{2}\right) \otimes w=v_{1} \otimes w+v_{2} \otimes w$.
4. $v \otimes\left(w_{1}+w_{2}\right)=v \otimes w_{1}+v \otimes w_{2}$.

These equations make sense because $M \otimes N$ is another R-module. They can be summarised by saying that the map B is bilinear. We will elaborate below.

An Example: Sometimes it is possible to figure out $M \otimes N$ just from using the rules above. Here is a classic example. Let $R=\boldsymbol{Z}$, the integers. Any finite abelian group is a module over \boldsymbol{Z}. The scaling rule is just $m g=g+\ldots+g$ (m times $)$. In particular, this is true for \boldsymbol{Z} / n. Let's show that $\boldsymbol{Z} / 2 \otimes \boldsymbol{Z} / 3$ is the trivial module.

Consider the element $1 \otimes 1$. We have

$$
2(1 \otimes 1)=2 \otimes 1=0 \otimes 1=0(1 \otimes 1)=0 .
$$

At the same time

$$
2(1 \otimes 1)=1 \otimes 3=1 \otimes 0=0(1 \otimes 1)=0
$$

But then

$$
1(1 \otimes 1)=(3-2)(1 \otimes 1)=0-0=0
$$

Hence $1 \otimes 1$ is trivial. From here it is easy to see that $a \otimes b$ is trivial for all $a \in \boldsymbol{Z} / 2$ and $b \in \boldsymbol{Z} / 3$. There really aren't many choices. But $\boldsymbol{Z} / 2 \otimes \boldsymbol{Z} / 3$ is the span of the image of $M \times N$ under the tensor map. Hence $\boldsymbol{Z} / 2 \otimes \boldsymbol{Z} / 3$ is trivial.

3 The Universal Property

Linear and Bilinear Maps: Let M and N be R-modules. A map $\phi: M \rightarrow$ N is R-linear (or just linear for short) provided that

1. $\phi(r v)=r \phi(v)$.
2. $\phi\left(v_{1}+v_{2}\right)=\phi\left(v_{1}\right)+\phi\left(v_{2}\right)$.

A map $\phi: M \times N \rightarrow P$ is R-bilinear if

1. For any $m \in M$, the map $n \rightarrow \phi(m, n)$ is a linear map from N to P.
2. For any $n \in N$, the map $m \rightarrow \phi(m, n)$ is a linear map from M to P.

Existence of the Universal Property: The tensor product has what is called a universal property. the name comes from the fact that the construction to follow works for all maps of the given type.

Lemma 3.1 Suppose that $\phi: M \times N \rightarrow P$ is a bilinear map. Then there is a linear map $\widehat{\phi}: M \otimes N \rightarrow P$ such that $\phi(m, n)=\widehat{\phi}(m \otimes n)$. Equivalently, $\phi=\widehat{\phi} \circ B$, where $B: M \times N \rightarrow M \otimes N$ is as above.

Proof: First of all, there is a linear map $\psi: Y(M \times N) \rightarrow P$. The map is given by

$$
\begin{equation*}
\psi\left(r_{1}\left(v_{1}, w_{1}\right)+\ldots+r_{n}\left(v_{n}, w_{n}\right)\right)=r_{1} \psi\left(v_{1}, w_{1}\right)+\ldots+r_{n} \psi\left(v_{n}, w_{n}\right) \tag{4}
\end{equation*}
$$

That is, we do the obvious map, and then simplify the sum in P. Since ϕ is bilinear, we see that $\psi(s)=0$ for all $s \in S$. Therefore, $\psi=0$ on $Y(S)$. But then ψ gives rise to a map from $M \otimes N=Y / Y(S)$ into P, just using the formula

$$
\begin{equation*}
\widehat{\phi}(a+Y(S))=\psi(a) \tag{5}
\end{equation*}
$$

Since ψ vanishes on $Y(S)$, this definition is the same no matter what coset representative is chosen. By construction $\widehat{\phi}$ is linear and satisfies $\widehat{\phi}(m \otimes n)=$ $\phi(m, n)$.

Uniqueness of the Universal Property: Not only does $(B, M \otimes N)$ have the universal property, but any other pair $\left(B^{\prime},(M \otimes N)^{\prime}\right)$ with the same property is essentially identical to $(B, M \otimes N)$. The next result says this precisely.

Lemma 3.2 Suppose that $\left(B^{\prime},(M \otimes N)^{\prime}\right)$ is a pair satisfying the following axioms:

- $(M \otimes N)^{\prime}$ is an R-module.
- $B^{\prime}: M \times N \rightarrow(M \otimes N)^{\prime}$ is a bilinear map.
- $(M \otimes N)^{\prime}$ is spanned by the image $B^{\prime}(M \times N)$.
- For any bilinear map $T: M \times N \rightarrow P$ there is a linear map L : $(M \otimes N)^{\prime} \rightarrow P$ such that $T=L \circ B^{\prime}$.

Then there is an isomorphism $I: M \otimes N \rightarrow(M \otimes N)^{\prime}$ and $B^{\prime}=I \circ B$.

Proof: Since $(B, M \otimes N)$ has the universal property, and we know that $B^{\prime}: M \times N \rightarrow(M \otimes N)^{\prime}$ is a bilinear map, there is a linear map I : $M \otimes N \rightarrow(M \otimes N)^{\prime}$ such that

$$
B^{\prime}=I \circ B
$$

We just have to show that I is an isomorphism. Reversing the roles of the two pairs, we also have a linear map $J:(M \otimes N)^{\prime} \rightarrow M \otimes N$ such that

$$
B=J \circ B^{\prime}
$$

Combining these equations, we see that

$$
B=J \circ I \circ B
$$

But then $J \circ I$ is the identity on the set $B(M \times N)$. But this set spans $M \otimes N$. Hence $J \circ I$ is the identity on $M \otimes N$. The same argument shows that $I \circ J$ is the identity on $(M \otimes N)^{\prime}$. But this situation is only possible if both I and J are isomorphisms.

4 Vector Spaces

The tensor product of two vectors spaces is much more concrete. We will change notation so that F is a field and V, W are vector spaces over F. Just to make the exposition clean, we will assume that V and W are finite
dimensional vector spaces. Let v_{1}, \ldots, v_{m} be a basis for V and let w_{1}, \ldots, w_{n} be a basis for W. We define $V \otimes W$ to be the set of formal linear combinations of the $m n$ symbols $v_{i} \otimes w_{j}$. That is, a typical element of $V \otimes W$ is

$$
\begin{equation*}
\sum_{i, j} c_{i j}\left(v_{i} \otimes w_{j}\right) \tag{6}
\end{equation*}
$$

The space $V \otimes W$ is clearly a finite dimensional vector space of dimension $m n$. it is important to note that we are not giving a circular definition. This time $v_{i} \otimes w_{j}$ is just a formal symbol.

However, now we would like to define the bilinear map

$$
B: V \times W \rightarrow V \otimes W
$$

Here is the formula

$$
\begin{equation*}
B\left(\sum a_{i} v_{i}, \sum b_{j} w_{j}\right)=\sum_{i, j} a_{i} b_{j}\left(v_{i} \otimes w_{j}\right) \tag{7}
\end{equation*}
$$

This gives a complete definition because every element of V is a unique linear combination of the $\left\{v_{i}\right\}$ and every element of W is a unique linear combination of the $\left\{w_{j}\right\}$. A routine check shows that B is a bilinear map.

Finally, if $T: V \times W \rightarrow P$ is some bilinear map, we define $L: V \otimes W \rightarrow P$ using the formula

$$
\begin{equation*}
L\left(\sum_{i, j} c_{i j}\left(v_{i} \otimes w_{j}\right)\right)=\sum_{i, j} c_{i j} T\left(v_{i}, w_{j}\right) \tag{8}
\end{equation*}
$$

It is an easy matter to check that L is linear and that $T=L \circ B$.
Since our definition here of B and $V \otimes W$ satisfies the universal property, it must coincide with the more abstract definition given above.

5 Properties of the Tensor Product

Going back to the general case, here I'll work out some properties of the tensor product. As usual, all modules are unital R-modules over the ring R.

Lemma 5.1 $M \otimes N$ is isomorphic to $N \otimes M$.

Proof: This is obvious from the construction. The map $(v, w) \rightarrow(w, v)$ extends to give an isomorphism from $Y_{M, N}=L(M \times N)$ to $Y_{N, M}=L(N \times$ $N)$, and this isomorphism maps the set $S_{M, N} \subset Y_{M, N}$ of bilinear relations set $S_{N, M} \subset Y_{N, M}$ and therefore gives an isomorphism between the ideals $Y_{M, N} S_{M, N}$ and $Y_{N, M} S_{N, M}$. So, the obvious map induces an isomorphism on the quotients.

Lemma 5.2 $R \otimes M$ is isomorphic to M.
Proof: The module axioms give us a surjective bilinear map $T: R \times M \rightarrow M$ given by $T(r, m)=r m$. By the universal property, there is a linear map $L: R \otimes M \rightarrow M$ such that $T=L \circ B$. Since T is surjective, L is also surjective. At the same time, we have a map $L^{*}: M \rightarrow R \otimes M$ given by the formula

$$
\begin{equation*}
L^{*}(v)=B(1, v)=1 \otimes v \tag{9}
\end{equation*}
$$

The map L^{*} is linear because B is bilinear. We compute

$$
\begin{equation*}
L^{*} \circ L(r \otimes v)=L^{*}(r v)=1 \otimes r v=r \otimes v . \tag{10}
\end{equation*}
$$

So $L^{*} \circ L$ is the identity on the image $B(R \times M)$. But this image spans $R \otimes M$. Hence $L^{*} \circ L$ is the identity. But this is only possible if L is injective. Hence L is an isomorphism.

Lemma 5.3 $M \otimes\left(N_{1} \times N_{2}\right)$ is isomorphic to $\left(M \otimes N_{1}\right) \times\left(N \otimes N_{2}\right)$.

Proof: Let $N=N_{1} \times N_{2}$. There is an obvious isomorphism ϕ from $Y=Y_{M, N}$ to $Y_{1} \times Y_{2}$, where $Y_{j}=Y_{M, N_{j}}$, and $\phi(S)=S_{1} \times S_{2}$. Here $S_{j}=S_{M, N_{j}}$. Therefore, ϕ induces an isomorphism from $Y / Y S$ to $\left(Y_{1} / Y_{1} S_{1}\right) \times\left(Y_{2} / Y_{2} S_{2}\right)$.

Finally, we can prove something (slghtly) nontrivial.
Lemma 5.4 $M \otimes R^{n}$ is isomorphic to M^{n}.
Proof: By repeated applications of the previous result, $M \otimes R^{n}$ is isomorphic to $(M \otimes R)^{n}$, which is in turn isomorphic to M^{n}.

As a special case,

Corollary 5.5 $R^{m} \otimes R^{n}$ is isomorphic to $R^{m n}$.
This is a reassurance that we got things right for vector spaces.
For our next result we need a technical lemma.
Lemma 5.6 Suppose that Y is a module and $Y^{\prime} \subset Y$ and $I \subset Y$ are both submodules. Let $I^{\prime}=I \cap Y^{\prime}$. Then there is an injective linear map from Y^{\prime} / I^{\prime} into Y / I.

Proof: We have a linear map $\phi: Y^{\prime} \rightarrow Y / I$ induced by the inclusion from Y^{\prime} into Y. Suppose that $\phi(a)=0$. Then $a \in I$. But, at the same time $a \in Y^{\prime}$. Hence $a \in I^{\prime}$. Conversely, if $a \in I^{\prime}$ then $\phi(a)=0$. In short, the kernel of ϕ is I^{\prime}. But then the usual isomorphism theorem shows that ϕ induces an injective linear map from Y^{\prime} / I^{\prime} into Y / I.

Now we deduce the corollary we care about.
Lemma 5.7 Suppose that $M^{\prime} \subset M$ and $N^{\prime} \subset N$ are submodules. Then there is an injective linear map from $M^{\prime} \otimes N^{\prime}$ into $M \otimes N$. This map is the identity on elements of the form $a \otimes b$, where $a \in M^{\prime}$ and $b \in N^{\prime}$.

Proof: We apply the previous result to the module $Y=Y_{M, N}$ and the submodules $I=S_{M, N}$ and $M^{\prime}=Y_{M^{\prime}, N^{\prime}}$.

In view of the previous result, we can think of $M^{\prime} \otimes N^{\prime}$ as a submodule of $M \otimes N$ when $M^{\prime} \subset N$ and $N^{\prime} \subset N$ are submodules.

This last result says something about vector spaces. Let's take an example where the field is \boldsymbol{Q} and the vector spaces are \boldsymbol{R} and $\boldsymbol{R} / \boldsymbol{Q}$. These two vector spaces are infinite dimensional. It follows from Zorn's lemma that they both have bases. However, You might want to see that $\boldsymbol{R} \otimes \boldsymbol{R} / \boldsymbol{Q}$ is nontrivial even without using a basis for both. If we take any finite dimensional subspaces $V \subset \boldsymbol{R}$ and $W \subset \boldsymbol{R} / \boldsymbol{Q}$, then we know $V \otimes W$ is a submodule of $\boldsymbol{R} \otimes \boldsymbol{R} / \boldsymbol{Q}$. Hence $\boldsymbol{R} \otimes \boldsymbol{R} / \boldsymbol{Q}$ is nontrivial. In particular, we can use this to show that the element $1 \otimes[\alpha]$ is nontrivial when α is irrational.

