ERRATA TO "LINEAR ALGEBRA DONE WRONG"

- **p. 30:** the definition of a subspace should read "A *subspace* of a vector space V is a non-empty subset $V_0 \subset V$ of V..."—the word non-empty is inserted.
- **p. 31, problem 7.2:** the last sentence of the problem should read: "Show that if X and Y are *subspaces* of V, then X + Y is also a subspace."
- **p. 42:** line 3 from below should read: "Make sure, by applying row operations of type 1 (row exchange), if necessary..."—not "type 2".
- p. 48: There should be "row" instead of "column" in line 9 from below. This line should read: "...if and only if there is a pivot in every row in echelon form of the matrix."
- **p. 50, line 2:** should be "columns" instead of "rows" here. This line shoul read: "... cannot exceed the number of columns, $n \le m$."
- **p. 55:** Subsection 5.1 should start before Proposition 5.4. The phrase "The following statement will play an important role later." should be the first sentence of this subsection.
- **p. 66, Sect. 7.4:** in the second to last paragraph before the Remark, A and A_e are mixed up, and the indices in $\mathbf{v}_r, \ldots, \mathbf{v}_n$ are wrong (it should be $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$). The correct paragraph should read as:

"To see that, let vectors $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_n$ complete the rows of A_e to a basis in \mathbb{R}^n . Then, if we add to a matrix A_e rows $\mathbf{v}_{r+1}^T, \ldots, \mathbf{v}_n^T$, we get an invertible matrix. Let call this matrix \widetilde{A}_e , and let \widetilde{A} be the matrix obtained from A by adding rows $\mathbf{v}_{r+1}^T, \ldots, \mathbf{v}_n^T$. The matrix \widetilde{A}_e can be obtained from \widetilde{A} by row operations, so

$$\widetilde{A}_{\rm e} = E\widetilde{A},$$

where E is the product of the corresponding elementary matrices. Then $\widetilde{A} = E^{-1}$ and \widetilde{A} is invertible as a product of invertible matrices."

- **p. 68, problem 7.13:** There should be question mark "?" (without quotes), not "/" at the end of the last sentence.
- **p. 86:** there should be \mathbf{v}_n instead of \mathbf{e}_n on the last line.
- p. 86, Problem 3.10: The last matrix there should be

$$\left(\begin{array}{cc}A & \mathbf{0} \\ * & I\end{array}\right)$$

p. 87, line 9: the line should read

"... $D(\mathbf{e}_{j_1} \cdot \mathbf{e}_{j_2}, \dots \cdot \mathbf{e}_{j_n})$ is zero, because there are two equal columns here." ("columns" instead of "rows")

p. 88: equation (4.2) should read

(4.2)
$$\det A = \sum_{\sigma \in \operatorname{Perm}(n)} a_{\sigma(1),1} a_{\sigma(2),2} \dots a_{\sigma(n),n} \operatorname{sign}(\sigma),$$

(should be no commas between $a_{\sigma(k),k}$)

- **p. 95:** In item c) of Problem 5.6 the formula should be " $A_n \cdot (x c_0)(x c_1) \dots (x c_{n-1})$ ", not " $A_n \cdot (x c_0)(x c_1) \dots (x c_n)$ "
- **p. 126, Problem 2.3:** In item a) the summation should be $\sum_{k=1}^{n} \dots$, not $\sum_{k=1}^{\infty} \dots$

p. 129: The last line in the proof of Proposition 3.3 should read

$$= (\mathbf{v}, \mathbf{v}_k) - \alpha_k(\mathbf{v}_k, \mathbf{v}_k) = (\mathbf{v}, \mathbf{v}_k) - \frac{(\mathbf{v}, \mathbf{v}_k)}{\|\mathbf{v}_k\|^2} \|\mathbf{v}_k\|^2 = 0.$$

not

$$= (\mathbf{v}, \mathbf{v}_k) - \alpha_k(\mathbf{v}_k, \mathbf{v}_k) = \frac{(\mathbf{v}, \mathbf{v}_k)}{\|\mathbf{v}_k\|^2} \|\mathbf{v}_k\|^2 = 0.$$

p. 142–143: Proof of Lemma 6.2 should read:

Proof. If $U^*U = I$, then by the definition of adjoint operator

 $(\mathbf{x}, \mathbf{x}) = (U^*U\mathbf{x}, \mathbf{x}) = (U\mathbf{x}, U\mathbf{x}) \qquad \forall \mathbf{x} \in X.$

Therefore $\|\mathbf{x}\| = \|U\mathbf{x}\|$, and so U is an isometry.

On the other hand, if U is an isometry, then by the definition of adjoint operator and by Theorem 6.1 we have for all $\mathbf{x} \in X$

$$(U^*U\mathbf{x}, \mathbf{y}) = (U\mathbf{x}, U\mathbf{y}) = (\mathbf{x}, \mathbf{y}) \qquad \forall \mathbf{y} \in X,$$

and therefore by Corollary 1.5 $U^*U\mathbf{x} = \mathbf{x}$. Since it is true for all $\mathbf{x} \in X$, we have $U^*U = I$.

- **p. 145:** The second line of the proof of the proposition 6.5 should read " $UB\mathbf{x} = U(\lambda \mathbf{x}) = \lambda U\mathbf{x}$, i.e. $U\mathbf{x}$ is an eigenvector of A." (" $UB\mathbf{x}$ should be instead of $UA\mathbf{x}$)
- p. 157: Conclusion of Theorem 1.1 should read
 - "In other words, any $n \times n$ matrix A can be represented as $A = UTU^*$, where U is a unitary, and T is an upper triangular matrix." (" $A = UTU^*$ ", not " $T = UTU^*$ ")
- p. 164, line 2: Text in problem 2.6 should read "... has positive eigenvalues...", not "... has positive eigenvectors..."
- p. 164, Problem 2.14: One "eigenvalues" should be deleted.
- p. 171, problem 3.6: The part b) of the problem should read
 - b) " $\min_{\|\mathbf{x}\|=1} \|A\mathbf{x}\|$ and the vectors where the minimum is attained;"

(i.e. the condition should be $\|\mathbf{x}\| = 1$, not $\|\mathbf{x}\| \le 1$).

p. 173, line 12: it should be " $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$ ", not " $\mathbf{v} = (x_1, x_2, \dots, x_n)^T$ ", there.

p. 174, formula (4.1): The formula and the text around it should read:

... Since for $\mathbf{x} = (x_1, x_2, \dots, x_n)^T$

(1)
$$A\mathbf{x} = \sum_{k=1}^{r} s_k x_k \mathbf{e}_k,$$

we can conclude that

$$||A\mathbf{x}||^{2} = \sum_{k=1}^{r} s_{k}^{2} |x_{k}|^{2} \le s_{1}^{2} \sum_{k=1}^{r} |x_{k}|^{2} = s_{1}^{2} \cdot ||\mathbf{x}||^{2},$$

so $||A\mathbf{x}|| \leq s_1 ||\mathbf{x}||$.

p. 175: The last displayed formula on this page should read

$$||A||_2^2 = \operatorname{trace}(A^*A) = \sum_{k=1}^r s_k^2.$$

(there should be $||A||_2^2$, not $||A||_2$).

p. 179: formula on line 10 from below should read

$$\mathbf{x} := \operatorname{Re} \mathbf{u} = (\mathbf{u} + \overline{\mathbf{u}})/2, \qquad \mathbf{y} = \operatorname{Im} \mathbf{u} = (\mathbf{u} - \overline{\mathbf{u}})/(2i),$$

not

$$\mathbf{x}_k := \operatorname{Re} \mathbf{u} = (\mathbf{u} + \overline{\mathbf{u}})/2, \qquad \mathbf{y} = \operatorname{Im} \mathbf{u} = (\mathbf{u} - \overline{\mathbf{u}})/(2i),$$

p. 183, Lemma 5.6: in the second line of the statement of the lemma it should be written "... rotations $R_1, R_2, \ldots, R_N, N \leq n(n-1)/2...$ ", not "... rotations $R_1, R_2, \ldots, R_n, n \leq n(n-1)/2...$ "