ERRATA TO "LINEAR ALGEBRA DONE WRONG"

p. 30: the definition of a subspace should read "A subspace of a vector space V is a non-empty subset $V_{0} \subset V$ of V..."-the word non-empty is inserted.
p. 31, problem 7.2: the last sentence of the problem should read: "Show that if X and Y are subspaces of V, then $X+Y$ is also a subspace."
p. 42: line 3 from below should read: "Make sure, by applying row operations of type 1 (row exchange), if necessary..."-not "type 2".
p. 48: There should be "row" instead of "column" in line 9 from below. This line should read: "... if and only if there is a pivot in every row in echelon form of the matrix."
p. 50, line 2: should be "columns" instead of "rows" here. This line shoul read: ". . cannot exceed the number of columns, $n \leq m$."
p. 55: Subsection 5.1 should start before Proposition 5.4. The phrase "The following statement will play an important role later." should be the first sentence of this subsection.
p. 66, Sect. 7.4: in the second to last paragraph before the Remark, A and A_{e} are mixed up, and the indices in $\mathbf{v}_{r}, \ldots, \mathbf{v}_{n}$ are wrong (it should be $\left.\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}\right)$. The correct paragraph should read as:
"To see that, let vectors $\mathbf{v}_{r+1}, \ldots, \mathbf{v}_{n}$ complete the rows of A_{e} to a basis in \mathbb{R}^{n}. Then, if we add to a matrix A_{e} rows $\mathbf{v}_{r+1}^{T}, \ldots, \mathbf{v}_{n}^{T}$, we get an invertible matrix. Let call this matrix $\widetilde{A}_{\mathrm{e}}$, and let \widetilde{A} be the matrix obtained from A by adding rows $\mathbf{v}_{r+1}^{T}, \ldots, \mathbf{v}_{n}^{T}$. The matrix $\widetilde{A}_{\mathrm{e}}$ can be obtained from \widetilde{A} by row operations, so

$$
\widetilde{A}_{\mathrm{e}}=E \widetilde{A},
$$

where E is the product of the corresponding elementary matrices. Then $\widetilde{A}=E^{-1}$ and \widetilde{A} is invertible as a product of invertible matrices."
p. 68, problem 7.13: There should be question mark "?" (without quotes), not "/" at the end of the last sentence.
p. 86: there should be \mathbf{v}_{n} instead of \mathbf{e}_{n} on the last line.
p. 86, Problem 3.10: The last matrix there should be

$$
\left(\begin{array}{ll}
A & \mathbf{0} \\
* & I
\end{array}\right)
$$

p. 87, line 9: the line should read
"...D($\left.\mathbf{e}_{j_{1}} \cdot \mathbf{e}_{j_{2}}, \ldots \mathbf{e}_{j_{n}}\right)$ is zero, because there are two equal columns here." ("columns" instead of "rows")
p. 88: equation (4.2) should read

$$
\begin{equation*}
\operatorname{det} A=\sum_{\sigma \in \operatorname{Perm}(n)} a_{\sigma(1), 1} a_{\sigma(2), 2} \ldots a_{\sigma(n), n} \operatorname{sign}(\sigma), \tag{4.2}
\end{equation*}
$$

(should be no commas between $a_{\sigma(k), k}$)
p. 95: In item c) of Problem 5.6 the formula should be " $A_{n} \cdot\left(x-c_{0}\right)(x-$ $\left.c_{1}\right) \ldots\left(x-c_{n-1}\right)$ ", not " $A_{n} \cdot\left(x-c_{0}\right)\left(x-c_{1}\right) \ldots\left(x-c_{n}\right)$ "
p. 126, Problem 2.3: In item a) the summation should be $\sum_{k=1}^{n} \ldots$, not $\sum_{k=1}^{\infty} \ldots$
p. 129: The last line in the proof of Proposition 3.3 should read

$$
=\left(\mathbf{v}, \mathbf{v}_{k}\right)-\alpha_{k}\left(\mathbf{v}_{k}, \mathbf{v}_{k}\right)=\left(\mathbf{v}, \mathbf{v}_{k}\right)-\frac{\left(\mathbf{v}, \mathbf{v}_{k}\right)}{\left\|\mathbf{v}_{k}\right\|^{2}}\left\|\mathbf{v}_{k}\right\|^{2}=0 .
$$

not

$$
=\left(\mathbf{v}, \mathbf{v}_{k}\right)-\alpha_{k}\left(\mathbf{v}_{k}, \mathbf{v}_{k}\right)=\frac{\left(\mathbf{v}, \mathbf{v}_{k}\right)}{\left\|\mathbf{v}_{k}\right\|^{2}}\left\|\mathbf{v}_{k}\right\|^{2}=0
$$

p. 142-143: Proof of Lemma 6.2 should read:

Proof. If $U^{*} U=I$, then by the definition of adjoint operator

$$
(\mathbf{x}, \mathbf{x})=\left(U^{*} U \mathbf{x}, \mathbf{x}\right)=(U \mathbf{x}, U \mathbf{x}) \quad \forall \mathbf{x} \in X
$$

Therefore $\|\mathrm{x}\|=\|U \mathrm{x}\|$, and so U is an isometry.
On the other hand, if U is an isometry, then by the definition of adjoint operator and by Theorem 6.1 we have for all $\mathbf{x} \in X$

$$
\left(U^{*} U \mathbf{x}, \mathbf{y}\right)=(U \mathbf{x}, U \mathbf{y})=(\mathbf{x}, \mathbf{y}) \quad \forall \mathbf{y} \in X
$$

and therefore by Corollary $1.5 U^{*} U \mathbf{x}=\mathbf{x}$. Since it is true for all $\mathrm{x} \in X$, we have $U^{*} U=I$.
p. 145: The second line of the proof of the proposition 6.5 should read $" U B \mathbf{x}=U(\lambda \mathbf{x})=\lambda U \mathbf{x}$, i.e. $U \mathbf{x}$ is an eigenvector of A." (" $U B \mathbf{x}$ should be instead of $U A \mathbf{x}$)
p. 157: Conclusion of Theorem 1.1 should read
"In other words, any $n \times n$ matrix A can be represented as $A=$ $U T U^{*}$, where U is a unitary, and T is an upper triangular matrix." (" $A=U T U^{*} "$, not " $T=U T U^{* ")}$
p. 164, line 2: Text in problem 2.6 should read ". . . has positive eigenvalues...", not "... has positive eigenvectors..."
p. 164, Problem 2.14: One "eigenvalues" should be deleted.
p. 171, problem 3.6: The part b) of the problem should read
b) " $\min _{\|\mathbf{x}\|=1}\|A \mathbf{x}\|$ and the vectors where the minimum is attained;"
(i.e. the condition should be $\|\mathbf{x}\|=1$, not $\|\mathbf{x}\| \leq 1$).
p. 173, line 12: it should be " $\mathrm{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T "}$, not " $\mathbf{v}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$ " there.
p. 174, formula (4.1): The formula and the text around it should read:
\ldots Since for $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{T}$

$$
\begin{equation*}
A \mathbf{x}=\sum_{k=1}^{r} s_{k} x_{k} \mathbf{e}_{k} \tag{1}
\end{equation*}
$$

we can conclude that

$$
\|A \mathbf{x}\|^{2}=\sum_{k=1}^{r} s_{k}^{2}\left|x_{k}\right|^{2} \leq s_{1}^{2} \sum_{k=1}^{r}\left|x_{k}\right|^{2}=s_{1}^{2} \cdot\|\mathbf{x}\|^{2}
$$

so $\|A \mathbf{x}\| \leq s_{1}\|\mathbf{x}\|$.
p. 175: The last displayed formula on this page should read

$$
\|A\|_{2}^{2}=\operatorname{trace}\left(A^{*} A\right)=\sum_{k=1}^{r} s_{k}^{2}
$$

(there should be $\|A\|_{2}^{2}$, not $\|A\|_{2}$).
p. 179: formula on line 10 from below should read

$$
\mathbf{x}:=\operatorname{Re} \mathbf{u}=(\mathbf{u}+\overline{\mathbf{u}}) / 2, \quad \mathbf{y}=\operatorname{Im} \mathbf{u}=(\mathbf{u}-\overline{\mathbf{u}}) /(2 i)
$$

not

$$
\mathbf{x}_{k}:=\operatorname{Re} \mathbf{u}=(\mathbf{u}+\overline{\mathbf{u}}) / 2, \quad \mathbf{y}=\operatorname{Im} \mathbf{u}=(\mathbf{u}-\overline{\mathbf{u}}) /(2 i)
$$

p. 183, Lemma 5.6: in the second line of the statement of the lemma it should be written ". . rotations $R_{1}, R_{2}, \ldots, R_{N}, N \leq n(n-1) / 2 \ldots$ ", not ". . rotations $R_{1}, R_{2}, \ldots, R_{n}, n \leq n(n-1) / 2 \ldots "$

