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The Plan

Define orientable arithmetic matroids
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The Plan

Define orientable arithmetic matroids
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The Plan

Define orientable arithmetic matroids

Define their sandpile group

Give a generalized Matrix-Tree Theorem
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The Plan

Define orientable arithmetic matroids

Define their sandpile group

Give a generalized Matrix-Tree Theorem

Construct a periodic tiling of space

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 2 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Plan

Define orientable arithmetic matroids

Define their sandpile group

Give a generalized Matrix-Tree Theorem

Construct a periodic tiling of space

Use it to construct “bijections”
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The Plan

Define orientable arithmetic matroids

Define their sandpile group

Give a generalized Matrix-Tree Theorem

Construct a periodic tiling of space

Use it to construct “bijections”

Show some pretty pictures
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.

For this talk, we will only work with representable matroids.
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.

For this talk, we will only work with representable matroids.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.

For this talk, we will only work with representable matroids.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

Start with a matrix. The columns form the ground set, so
E = {v1, v2, v3, v4}.
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.

For this talk, we will only work with representable matroids.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

Start with a matrix. The columns form the ground set, so
E = {v1, v2, v3, v4}.

The maximal linearly independent subsets of E (for this talk over R) are the
bases, so B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
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Representable Matroids

In general, a matroid is a pair (E ,B), where B ⊆ P(E ), that satisfies some
conditions. E is called the ground set while B is called the set of bases.

For this talk, we will only work with representable matroids.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

Start with a matrix. The columns form the ground set, so
E = {v1, v2, v3, v4}.

The maximal linearly independent subsets of E (for this talk over R) are the
bases, so B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

The size of each basis is the rank of the matroid, which is 2 for this example.
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) =
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E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
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1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) =

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 4 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) =
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.
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Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 4 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1,
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) =
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v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) =
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E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) =
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E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) =
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) = 1,
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E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2,
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E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3, and
m({v3, v4}) = 3.
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3, and
m({v3, v4}) = 3.

We call the triple (E ,B,m) an orientable arithmetic matroid (oa-matroid).
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Basis Multiplicity

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

For each basis B ∈ B, the multiplicity of B, written m(B), is the GCD of the
determinants of all |B| × |B| minors of the matrix restricted to B.

m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3, and
m({v3, v4}) = 3.

We call the triple (E ,B,m) an orientable arithmetic matroid (oa-matroid).

Technical Note (see Pagaria 2020 for Details)
Usually, m is defined on all subsets of E , not just B. With our setup, we are
actually working with oa-matroids that have the strong GCD property.
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Standard Representative Matrices

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3 ,
m({v3, v4}) = 3.

M =

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

D =

v1 v2 v3 v4( )
1 0 2 3
0 1 −1 0
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.

.

Standard Representative Matrices

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3 ,
m({v3, v4}) = 3.

M =

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

D =

v1 v2 v3 v4( )
1 0 2 3
0 1 −1 0

Property 1: M and D represent the same oa-matroid.
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.

.

Standard Representative Matrices

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3 ,
m({v3, v4}) = 3.

M =

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

D =

v1 v2 v3 v4( )
1 0 2 3
0 1 −1 0

Property 1: M and D represent the same oa-matroid.
Property 2: imZ(MT ) = imZ(DT ).
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.

.

Standard Representative Matrices

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3 ,
m({v3, v4}) = 3.

M =

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

D =

v1 v2 v3 v4( )
1 0 2 3
0 1 −1 0

Property 1: M and D represent the same oa-matroid.
Property 2: imZ(MT ) = imZ(DT ).
A matrix of the form D =

[
Ir N

]
for some integer matrix N is called a

standard representative matrix.
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.

.

Standard Representative Matrices

E = {v1, v2, v3, v4}, B = {{v1, v2}, {v1, v3}, {v2, v3}, {v2, v4}, {v3, v4}}.
m({v1, v2}) = 1, m({v1, v3}) = 1, m({v2, v3}) = 2, m({v2, v4}) = 3 ,
m({v3, v4}) = 3.

M =

v1 v2 v3 v4( )1 1 1 3
1 2 0 3
1 0 2 3

D =

v1 v2 v3 v4( )
1 0 2 3
0 1 −1 0

Property 1: M and D represent the same oa-matroid.
Property 2: imZ(MT ) = imZ(DT ).
A matrix of the form D =

[
Ir N

]
for some integer matrix N is called a

standard representative matrix.

Proposition (Pagaria 2020)
If M generates a rank r matroid and m({v1, . . . , vr}) = 1, then there is a
unique(ish) standard representative matrix D that satisfies properties 1 and 2.
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Cell Complexes and oa-Matroids

Let Σ be a cell complex.

A

B

C

D
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Cell Complexes and oa-Matroids

Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be
the top-dimensional boundary map.

A

B

C

D

ABC ABD ACD BCD


AB 1 1 0 0
AC -1 0 1 0
AD 0 -1 -1 0
BC 1 0 0 1
BD 0 1 0 -1
CD 0 0 1 1
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Cell Complexes and oa-Matroids

Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be
the top-dimensional boundary map.

A

B

C

D

ABC ABD ACD BCD


AB 1 1 0 0
AC -1 0 1 0
AD 0 -1 -1 0
BC 1 0 0 1
BD 0 1 0 -1
CD 0 0 1 1

Definition
oa(Σ) is the oa-matroid represented by ∂.
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Cell Complexes and oa-Matroids

Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be
the top-dimensional boundary map.

A

B

C

D

ABC ABD ACD BCD


AB 1 1 0 0
AC -1 0 1 0
AD 0 -1 -1 0
BC 1 0 0 1
BD 0 1 0 -1
CD 0 0 1 1

Definition
oa(Σ) is the oa-matroid represented by ∂.

For this example, the first 3 columns form a basis with multiplicity 1. By last
slide’s proposition, oa(Σ) allows a standard representative matrix.
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Cell Complexes and oa-Matroids

Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be
the top-dimensional boundary map.

A

B

C

D

ABC ABD ACD BCD


AB 1 1 0 0
AC -1 0 1 0
AD 0 -1 -1 0
BC 1 0 0 1
BD 0 1 0 -1
CD 0 0 1 1

Definition
oa(Σ) is the oa-matroid represented by ∂.

For this example, the first 3 columns form a basis with multiplicity 1. By last
slide’s proposition, oa(Σ) allows a standard representative matrix.

ABC ABD ACD BCD( )1 0 0 1
0 1 0 1
0 0 1 1
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:

Definition
A regular matroid is an oa-matroid (E ,B,m) such that m ≡ 1.
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:

Definition
A regular matroid is an oa-matroid (E ,B,m) such that m ≡ 1.

Proposition
For any graph G, oa(G) is a regular matroid.
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:

Definition
A regular matroid is an oa-matroid (E ,B,m) such that m ≡ 1.

Proposition
For any graph G, oa(G) is a regular matroid.

For any choice of basis on a regular matroid, we can rearrange columns to
get a standard representative matrix D =

[
Ir N

]
.
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:

Definition
A regular matroid is an oa-matroid (E ,B,m) such that m ≡ 1.

Proposition
For any graph G, oa(G) is a regular matroid.

For any choice of basis on a regular matroid, we can rearrange columns to
get a standard representative matrix D =

[
Ir N

]
.

We can do the same for any choice of multiplicity 1 basis on an arbitrary
oa-matroid.
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Graphs, Regular Matroids, and oa-Matroids

A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
There are many equivalent definitions for regular matroids. Here, I offer a
new one:

Definition
A regular matroid is an oa-matroid (E ,B,m) such that m ≡ 1.

Proposition
For any graph G, oa(G) is a regular matroid.

For any choice of basis on a regular matroid, we can rearrange columns to
get a standard representative matrix D =

[
Ir N

]
.

We can do the same for any choice of multiplicity 1 basis on an arbitrary
oa-matroid.
For now, let’s not worry about oa-matroids without multiplicity 1 bases.
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D and D̂

Let D be a standard representative matrix
[
Ir N

]
where N is r × n.

D =
( )

1 0 2 3 7
0 1 −1 0 −2
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D and D̂

Let D be a standard representative matrix
[
Ir N

]
where N is r × n.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

Let D̂ be the matrix
[
−NT In

]

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1
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D and D̂

Let D be a standard representative matrix
[
Ir N

]
where N is r × n.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

Let D̂ be the matrix
[
−NT In

]

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

D̂ relates to D in several ways that we will explore on the next slide.
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

The rows of D̂ are all orthogonal to each row of D.
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

The rows of D̂ are all orthogonal to each row of D.
Oxley showed that D̂ represents the dual matroid of D.
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

The rows of D̂ are all orthogonal to each row of D.
Oxley showed that D̂ represents the dual matroid of D.
If we restrict D to any r columns and we restrict D̂ to the remaining n
columns, the determinants of these submatrices are equal up to sign.
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

The rows of D̂ are all orthogonal to each row of D.
Oxley showed that D̂ represents the dual matroid of D.
If we restrict D to any r columns and we restrict D̂ to the remaining n
columns, the determinants of these submatrices are equal up to sign.
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D and D̂

Let’s look at some properties of D and D̂.

D =
( )

1 0 2 3 7
0 1 −1 0 −2

D̂ =

( )−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1

The rows of D̂ are all orthogonal to each row of D.
Oxley showed that D̂ represents the dual matroid of D.
If we restrict D to any r columns and we restrict D̂ to the remaining n
columns, the determinants of these submatrices are equal up to sign.
If we put D on top of D̂, we get an invertible square matrix of the form:

D =

[
Ir N

−NT In

]
.
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Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.
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Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .
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Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

If D represents oa(Σ) for some cell complex Σ, then S(D) is what Duval,
Klivans, and Martin call the cutflow group of Σ.
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Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

If D represents oa(Σ) for some cell complex Σ, then S(D) is what Duval,
Klivans, and Martin call the cutflow group of Σ.
If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 10 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

If D represents oa(Σ) for some cell complex Σ, then S(D) is what Duval,
Klivans, and Martin call the cutflow group of Σ.
If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ. I
have a separate talk on my website devoted to explaining why this is true.
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Representable Matrix Sandpile Group

Let D be a standard representative matrix and let

D =

[
D
D̂

]
=

[
Ir N

−NT In

]
.

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

If D represents oa(Σ) for some cell complex Σ, then S(D) is what Duval,
Klivans, and Martin call the cutflow group of Σ.
If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ. I
have a separate talk on my website devoted to explaining why this is true.
If D represents a regular matroid, S(D) is isomorphic to the usual regular
matroid sandpile group.
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

D =

v1 v2 v3( )
1 0 3
0 1 2
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

D =

v1 v2 v3( )
1 0 3
0 1 2

|S(D)| = m({v1, v2})2 + m({v1, v3})2 + m({v2, v3})2 =

det

([
1 0
0 1

])2
+ det

([
1 3
0 2

])2
+ det

([
0 3
1 2

])2
= 12 + 22 + 32 = 14
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

Theorem (Merino, 1999)
When D represents a regular matroid, |S(D)| = |B|.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 11 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

Theorem (Merino, 1999)
When D represents a regular matroid, |S(D)| = |B|.

In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B for the regular matroid case.
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

Theorem (Merino, 1999)
When D represents a regular matroid, |S(D)| = |B|.

In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B for the regular matroid case.
Recently, I defined a family of combinatorially meaningful maps
f : S(D) → B such that for every B ∈ B, we have |f −1(B)| = m(B)2.
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Cellular Matrix-Tree Theorem

Let D be a standard representative matrix that represents (E ,B,m).

Theorem (Duval-Klivans-Martin, 2009)

|S(D)| =
∑
B∈B

m(B)2.

Theorem (Merino, 1999)
When D represents a regular matroid, |S(D)| = |B|.

In 2017, Backman, Baker, and Yuen defined a family of natural bijections
between S(D) and B for the regular matroid case.
Recently, I defined a family of combinatorially meaningful maps
f : S(D) → B such that for every B ∈ B, we have |f −1(B)| = m(B)2.
This is the main result of this talk.
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Fundamental Parallelepipeds

Definition
The fundamental parallelepiped of a square matrix M with column vectors
v1, . . . , vn is the set of points:{ n∑

i=1
aivi | 0 ≤ ai ≤ 1

}
.

We use the notation Π•(M) to indicate the fundamental parallelepiped of M.
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Fundamental Parallelepipeds

Definition
The fundamental parallelepiped of a square matrix M with column vectors
v1, . . . , vn is the set of points:{ n∑

i=1
aivi | 0 ≤ ai ≤ 1

}
.

We use the notation Π•(M) to indicate the fundamental parallelepiped of M.

The polytope Π•(M) is also called the zonotope or minkowski sum of the
columns of M.
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Fundamental Parallelepipeds

Definition
The fundamental parallelepiped of a square matrix M with column vectors
v1, . . . , vn is the set of points:{ n∑

i=1
aivi | 0 ≤ ai ≤ 1

}
.

We use the notation Π•(M) to indicate the fundamental parallelepiped of M.

The polytope Π•(M) is also called the zonotope or minkowski sum of the
columns of M.

In order to construct our maps, we associate each basis with the fundamental
parallelepiped of a particular matrix.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 12 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Basis Parallelepipeds

Let D =

v1 v2 v3( )
1 0 3
0 1 2

which means that D =

v1 v2 v3( )1 0 3
0 1 2
−3 −2 1

.
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Basis Parallelepipeds

Let D =

v1 v2 v3( )
1 0 3
0 1 2

which means that D =

v1 v2 v3( )1 0 3
0 1 2
−3 −2 1

.

For each basis B ∈ B, we get a parallelepiped P(B) by replacing the first r or
last n entries of each column of D by 0 based on which columns make up B.
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Basis Parallelepipeds

Let D =

v1 v2 v3( )
1 0 3
0 1 2

which means that D =

v1 v2 v3( )1 0 3
0 1 2
−3 −2 1

.

For each basis B ∈ B, we get a parallelepiped P(B) by replacing the first r or
last n entries of each column of D by 0 based on which columns make up B
(see example).

P({v1, v2}) = Π•

1 0 0
0 1 0
0 0 1

 P({v1, v3}) = Π•

1 0 3
0 0 2
0 −2 0


P({v2, v3}) = Π•

 0 0 3
0 1 2
−3 0 0


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The Tile Associated with D

We call
∪

B∈B P(B) the tile associated with D, denoted T (D).
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The Tile Associated with D

We call
∪

B∈B P(B) the tile associated with D, denoted T (D).

T (D) = Π•

1 0 0
0 1 0
0 0 1

 ∪
Π•

1 0 3
0 0 2
0 −2 0

∪Π•

 0 0 3
0 1 2
−3 0 0


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The Tile Associated with D

We call
∪

B∈B P(B) the tile associated with D, denoted T (D).

T (D) = Π•

1 0 0
0 1 0
0 0 1

 ∪
Π•

1 0 3
0 0 2
0 −2 0

∪Π•

 0 0 3
0 1 2
−3 0 0


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Some Fun With Blender
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The Best Theorem I’ve Ever Proven

Theorem (M. 2020)
The parallelepipeds that make up T (D) have non-overlapping interiors.
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The Best Theorem I’ve Ever Proven

Theorem (M. 2020)
The parallelepipeds that make up T (D) have non-overlapping interiors.
Furthermore, the translates of T (D) by integer linear combinations of rows of D
form a non-overlapping tiling of Rr+n.
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A Tiling Demonstration (More Blender Fun)
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal.
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
What does a point a ∈ P(B1)

◦ look like?

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
What does a point a ∈ P(B1)

◦ look like?
0 < ai < 1 and âi = 0 for i ∈ B1
0 < âi < 1 and ai = 0 for i ̸∈ B1.

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1



a =

[
a1c1 + a5c5

â2ĉ2 + â3ĉ3 + â4ĉ4

]

a =


0.5
[
1
0

]
+ 0.5

[
7
−2

]
0.7

1
0
2

+ 0.3

1
0
0

+ 0.2

0
1
0


 =


4
−1
1

0.2
1.4


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
What does a point b ∈ P(B2)

◦ look like?

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
What does a point b ∈ P(B2)

◦ look like?
0 < bi < 1 and b̂i = 0 for i ∈ B2
0 < b̂i < 1 and bi = 0 for i ̸∈ B2.

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]

D =


1 0 2 3 7
0 1 −1 0 −2
−2 1 1 0 0
−3 0 0 1 0
−7 2 0 0 1



b =

[
b3c3 + b5c5

b̂1ĉ1 + b̂2ĉ2 + b̂4ĉ4

]

b =


0.6
[

2
−1

]
+ 0.1

[
7
−2

]
0.2

−2
−3
−7

+ 0.8

1
0
2

+ 0.3

0
1
0


 =


1.9
−0.8
0.4
−0.3
0.2


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

Let di = ai − bi and d = [d1, d2, d3, d4, d5].

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

Let di = ai − bi and d = [d1, d2, d3, d4, d5].
Let d̂i = âi − b̂i and d̂ = [d̂1, d̂2, d̂3, d̂4, d̂5].

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

Let di = ai − bi and d = [d1, d2, d3, d4, d5].
Let d̂i = âi − b̂i and d̂ = [d̂1, d̂2, d̂3, d̂4, d̂5].

D =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
a − b =

[
d1c1 + d2c2 + d3c3 + d4c4 + d5c5
d̂1ĉ1 + d̂2ĉ2 + d̂3ĉ3 + d̂4ĉ4 + d̂5ĉ5

]
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

Let di = ai − bi and d = [d1, d2, d3, d4, d5].
Let d̂i = âi − b̂i and d̂ = [d̂1, d̂2, d̂3, d̂4, d̂5].

D =


r1
r2
r3
r4
r5

 =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
a − b =

[
d1c1 + d2c2 + d3c3 + d4c4 + d5c5
d̂1ĉ1 + d̂2ĉ2 + d̂3ĉ3 + d̂4ĉ4 + d̂5ĉ5

]
=


d · r1
d · r2
d̂ · r3
d̂ · r4
d̂ · r5

 =


0
0
0
0
0


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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

Let di = ai − bi and d = [d1, d2, d3, d4, d5].
Let d̂i = âi − b̂i and d̂ = [d̂1, d̂2, d̂3, d̂4, d̂5].

D =


r1
r2
r3
r4
r5

 =

[
c1 c2 c3 c4 c5
ĉ1 ĉ2 ĉ3 ĉ4 ĉ5

]
a − b =

[
d1c1 + d2c2 + d3c3 + d4c4 + d5c5
d̂1ĉ1 + d̂2ĉ2 + d̂3ĉ3 + d̂4ĉ4 + d̂5ĉ5

]
=


d · r1
d · r2
d̂ · r3
d̂ · r4
d̂ · r5

 =


0
0
0
0
0



The Important Result: d · d̂ = 0
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2

Case 2 i ̸∈ B1 ∪ B2

Case 3 i ∈ B1 \ B2

Case 4 i ∈ B2 \ B1
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2 (ai − bi) · (âi − b̂i) = (ai − bi) · (0 − 0) = 0
Case 2 i ̸∈ B1 ∪ B2

Case 3 i ∈ B1 \ B2

Case 4 i ∈ B2 \ B1
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2 (ai − bi) · (âi − b̂i) = (ai − bi) · (0 − 0) = 0
Case 2 i ̸∈ B1 ∪ B2 (ai − bi) · (âi − b̂i) = (0 − 0) · (âi − b̂i) = 0
Case 3 i ∈ B1 \ B2

Case 4 i ∈ B2 \ B1
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2 (ai − bi) · (âi − b̂i) = (ai − bi) · (0 − 0) = 0
Case 2 i ̸∈ B1 ∪ B2 (ai − bi) · (âi − b̂i) = (0 − 0) · (âi − b̂i) = 0
Case 3 i ∈ B1 \ B2 (ai − bi) · (âi − b̂i) = (ai − 0) · (0 − b̂i) < 0
Case 4 i ∈ B2 \ B1
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2 (ai − bi) · (âi − b̂i) = (ai − bi) · (0 − 0) = 0
Case 2 i ̸∈ B1 ∪ B2 (ai − bi) · (âi − b̂i) = (0 − 0) · (âi − b̂i) = 0
Case 3 i ∈ B1 \ B2 (ai − bi) · (âi − b̂i) = (ai − 0) · (0 − b̂i) < 0
Case 4 i ∈ B2 \ B1 (ai − bi) · (âi − b̂i) = (0 − bi) · (âi − 0) < 0
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A Proof that the P(Bi) have Non-Overlapping Interiors

Setup: D is a nonsingular (r + n)× (r + n) integer matrix whose first r rows
and last n rows are orthogonal. Label columns with ci and ĉi (see below).
B1 and B2 are each collections of r columns (say B1 = {1, 5}, B2 = {3, 5}).
Assume there exist a ∈ P(B1)

◦ and b ∈ P(B2)
◦ such that a − b = 0.

d · d̂ = 0 =⇒
r+n∑
i=1

(ai − bi) · (âi − b̂i) = 0

Case 1 i ∈ B1 ∩ B2 (ai − bi) · (âi − b̂i) = (ai − bi) · (0 − 0) = 0
Case 2 i ̸∈ B1 ∪ B2 (ai − bi) · (âi − b̂i) = (0 − 0) · (âi − b̂i) = 0
Case 3 i ∈ B1 \ B2 (ai − bi) · (âi − b̂i) = (ai − 0) · (0 − b̂i) < 0
Case 4 i ∈ B2 \ B1 (ai − bi) · (âi − b̂i) = (0 − bi) · (âi − 0) < 0

Since B1 ̸= B2 we have a contradiction!

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 18 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:
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The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:

Theorem (M. 2020)
The translates of T (D) by integer linear combinations of rows of D form a
non-overlapping tiling of Rr+n.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 19 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:

Theorem (M. 2020)
The translates of T (D) by integer linear combinations of rows of D form a
non-overlapping tiling of Rr+n.

We can make an argument based on the volume of T (D) that if the
translates do not overlap, they must form a tiling.
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The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:

Theorem (M. 2020)
The translates of T (D) by integer linear combinations of rows of D form a
non-overlapping tiling of Rr+n.

We can make an argument based on the volume of T (D) that if the
translates do not overlap, they must form a tiling.
The proof of non-overlapping uses the same general idea as the proof on the
previous slide. Instead of a − b = 0, we have a − b +DT z = 0 for some
integer vector z .
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The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:

Theorem (M. 2020)
The translates of T (D) by integer linear combinations of rows of D form a
non-overlapping tiling of Rr+n.

We can make an argument based on the volume of T (D) that if the
translates do not overlap, they must form a tiling.
The proof of non-overlapping uses the same general idea as the proof on the
previous slide. Instead of a − b = 0, we have a − b +DT z = 0 for some
integer vector z .
One step of this proof relies on the relationship between rows and columns of

D =

[
Ir N

−NT In

]
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The Full Theorem (Don’t Worry, I Won’t Prove It)

Here’s a reminder of the second part of the theorem:

Theorem (M. 2020)
The translates of T (D) by integer linear combinations of rows of D form a
non-overlapping tiling of Rr+n.

We can make an argument based on the volume of T (D) that if the
translates do not overlap, they must form a tiling.
The proof of non-overlapping uses the same general idea as the proof on the
previous slide. Instead of a − b = 0, we have a − b +DT z = 0 for some
integer vector z .
One step of this proof relies on the relationship between rows and columns of

D =

[
Ir N

−NT In

]
This theorem does not hold if we only assume orthogonality.
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

Our goal is to define a map f : S(D) → B such that for each B ∈ B,
|f −1(B)| = m(B)2.
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

Our goal is to define a map f : S(D) → B such that for each B ∈ B,
|f −1(B)| = m(B)2.
Our tiling result says that we can identify an equivalence class of S(D) with a
point of T (D) which is unique except at the boundary.
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

Our goal is to define a map f : S(D) → B such that for each B ∈ B,
|f −1(B)| = m(B)2.
Our tiling result says that we can identify an equivalence class of S(D) with a
point of T (D) which is unique except at the boundary.
To fix the boundary ambiguity, we choose a generic direction w and only
include a boundary point z if z + ϵw ∈ T (D) for all arbitrarily small ϵ.
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

Our goal is to define a map f : S(D) → B such that for each B ∈ B,
|f −1(B)| = m(B)2.
Our tiling result says that we can identify an equivalence class of S(D) with a
point of T (D) which is unique except at the boundary.
To fix the boundary ambiguity, we choose a generic direction w and only
include a boundary point z if z + ϵw ∈ T (D) for all arbitrarily small ϵ.
Let fw (z) = B if z + wϵ ∈ P(B) for all arbitrarily small ϵ.
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What Are We Doing Again?

D is a standard representative matrix associated with an oa-matroid
(E ,B,m).

Definition
The sandpile group of D, denoted S(D), is Zn+r/DTZn+r .

Our goal is to define a map f : S(D) → B such that for each B ∈ B,
|f −1(B)| = m(B)2.
Our tiling result says that we can identify an equivalence class of S(D) with a
point of T (D) which is unique except at the boundary.
To fix the boundary ambiguity, we choose a generic direction w and only
include a boundary point z if z + ϵw ∈ T (D) for all arbitrarily small ϵ.
Let fw (z) = B if z + wϵ ∈ P(B) for all arbitrarily small ϵ.

Theorem (M. 2020)
For any choice of w not in the span of a facet of P(B), |f −1

w (B)| = m(B)2
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The Simplest Example

The simplest case is when n = r = 1.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below. The translates of T (D) by integer linear
combinations of (1, k) and (−k, 1) tile the plane.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below.

Let w = (1, 1) be our choice of direction.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below.

Let w = (1, 1) be our choice of direction.
Nudge all points in this direction and see where they end up.
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below.

Let w = (1, 1) be our choice of direction.
Nudge all points in this direction and see where they end up.
We obtain a representative from each of the 10 equivalence classes of S(D).
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The Simplest Example

The simplest case is when n = r = 1.
Here, D is of the form

D =

[
1 k
−k 1

]
.

For k = 3, T (D) is shown below.

Let w = (1, 1) be our choice of direction.
Nudge all points in this direction and see where they end up.
We obtain a representative from each of the 10 equivalence classes of S(D).
One of them is mapped to the basis of multiplicity 1. Nine of them are
mapped to the basis of multiplicity 3.
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Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 22 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.
Here are some r = 2 examples computed using Sage.
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Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.
Here are some r = 2 examples computed using Sage.

D =

[
1 0 1 3 −4 5
0 1 3 3 3 −3

]
Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 22 / 26
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Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.
Here are some r = 2 examples computed using Sage.

D =

[
1 0 1 3 −4 5
0 1 3 3 3 −3

]
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Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.
Here are some r = 2 examples computed using Sage.

D =

[
1 0 1 3 −4 3 2
0 1 −3 −2 −1 0 1

]
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Pretty Pictures

Because of the structure of D, we can also tile Rr or Rn instead of Rr+n.
Here are some r = 2 examples computed using Sage.

D =

[
1 0 1 3 −4 3 2
0 1 −3 −2 −1 0 1

]
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
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Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
There is no longer a canonical form for a representative matrix D.

Alex McDonough (Brown University) A Higher-Dimensional Sandpile Map 9/30/20 23 / 26



.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
There is no longer a canonical form for a representative matrix D, and even
with D, there is no canonical D̂ or D.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
There is no longer a canonical form for a representative matrix D, and even
with D, there is no canonical D̂ or D.
Furthermore, for a given D, our map from S(D) → B no longer works.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
There is no longer a canonical form for a representative matrix D, and even
with D, there is no canonical D̂ or D.
Furthermore, for a given D, our map from S(D) → B no longer works.
Nevertheless, we are able to get meaningful maps from S(DT ) → B.
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A Few More Things

Let (E ,B) be a regular matroid represented by D.
My result gives a bijection between S(D) and B given a choice of direction
vector.
Backman, Baker, and Yuen previously defined such a bijection given a choice
of acyclic circuit and cocircuit signatures.
In fact, these two maps are equivalent (but don’t give the same sandpile
equivalence class representatives).

What about when (E ,B,m) doesn’t have a multiplicity 1 basis?
There is no longer a canonical form for a representative matrix D, and even
with D, there is no canonical D̂ or D.
Furthermore, for a given D, our map from S(D) → B no longer works.
Nevertheless, we are able to get meaningful maps from S(DT ) → B.
I’m really curious about the group S(DT ).
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Thanks For Listening!!!
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