A Higher-Dimensional Sandpile Map

Georgia Tech Algebra Seminar

Alex McDonough

Brown University

9/30/20

• Define orientable arithmetic matroids

- Define orientable arithmetic matroids
- Define their sandpile group

- Define orientable arithmetic matroids
- Define their sandpile group
- Give a generalized Matrix-Tree Theorem

- Define orientable arithmetic matroids
- Define their sandpile group
- Give a generalized Matrix-Tree Theorem
- Construct a periodic tiling of space

- Define orientable arithmetic matroids
- Define their sandpile group
- Give a generalized Matrix-Tree Theorem
- Construct a periodic tiling of space
- Use it to construct "bijections"

- Define orientable arithmetic matroids
- Define their sandpile group
- Give a generalized Matrix-Tree Theorem
- Construct a periodic tiling of space
- Use it to construct "bijections"
- Show some pretty pictures

• In general, a *matroid* is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the *ground set* while \mathcal{B} is called the set of *bases*.

- In general, a matroid is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the ground set while \mathcal{B} is called the set of bases.
- For this talk, we will only work with representable matroids.

- In general, a matroid is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the ground set while \mathcal{B} is called the set of bases.
- For this talk, we will only work with representable matroids.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- In general, a matroid is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the *ground set* while \mathcal{B} is called the set of *bases*.
- For this talk, we will only work with representable matroids.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

• Start with a matrix. The columns form the ground set, so $E = \{v_1, v_2, v_3, v_4\}.$

- In general, a matroid is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the *ground set* while \mathcal{B} is called the set of *bases*.
- For this talk, we will only work with representable matroids.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- Start with a matrix. The columns form the *ground set*, so $E = \{v_1, v_2, v_3, v_4\}.$
- The maximal linearly independent subsets of E (for this talk over \mathbb{R}) are the bases, so $\mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$

- In general, a matroid is a pair (E, \mathcal{B}) , where $\mathcal{B} \subseteq \mathcal{P}(E)$, that satisfies some conditions. E is called the *ground set* while \mathcal{B} is called the set of *bases*.
- For this talk, we will only work with representable matroids.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- Start with a matrix. The columns form the *ground set*, so $E = \{v_1, v_2, v_3, v_4\}.$
- The maximal linearly independent subsets of E (for this talk over \mathbb{R}) are the bases, so $\mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- The size of each basis is the *rank* of the matroid, which is 2 for this example.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

 $\bullet \ E = \{v_1, v_2, v_3, v_4\}, \ \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

• For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$,

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) =$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$,

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 1$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 1$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 1$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 1$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$,

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, and $m(\{v_3, v_4\}) = 3$.

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the multiplicity of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, and $m(\{v_3, v_4\}) = 3$.
- ullet We call the triple (E,\mathcal{B},m) an orientable arithmetic matroid (oa-matroid).

 $\bullet \ E = \{v_1, v_2, v_3, v_4\}, \ \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$

$$\begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

- For each basis $B \in \mathcal{B}$, the *multiplicity* of B, written m(B), is the GCD of the determinants of all $|B| \times |B|$ minors of the matrix restricted to B.
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, and $m(\{v_3, v_4\}) = 3$.
- We call the triple (E, \mathcal{B}, m) an orientable arithmetic matroid (oa-matroid).

Technical Note (see Pagaria 2020 for Details)

Usually, m is defined on all subsets of E, not just \mathcal{B} . With our setup, we are actually working with oa-matroids that have the $strong\ GCD\ property$.

Standard Representative Matrices

- $\bullet \ E = \{v_1, v_2, v_3, v_4\}, \ \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, $m(\{v_3, v_4\}) = 3$.

$$M = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix}$$

$$D = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Standard Representative Matrices

- $\bullet \ E = \{v_1, v_2, v_3, v_4\}, \ \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, $m(\{v_3, v_4\}) = 3$.

$$M = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Property 1: *M* and *D* represent the same oa-matroid.

Standard Representative Matrices

- $\bullet \ E = \{v_1, v_2, v_3, v_4\}, \ \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, $m(\{v_3, v_4\}) = 3$.

$$M = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Property 1: *M* and *D* represent the same oa-matroid.

Property 2: $\operatorname{im}_{\mathbb{Z}}(M^T) = \operatorname{im}_{\mathbb{Z}}(D^T)$.

Standard Representative Matrices

- $E = \{v_1, v_2, v_3, v_4\}, \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, $m(\{v_3, v_4\}) = 3$.

$$M = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Property 1: M and D represent the same oa-matroid.

Property 2: $\operatorname{im}_{\mathbb{Z}}(M^T) = \operatorname{im}_{\mathbb{Z}}(D^T)$.

• A matrix of the form $D = \begin{bmatrix} I_r & N \end{bmatrix}$ for some integer matrix N is called a standard representative matrix.

Standard Representative Matrices

- $E = \{v_1, v_2, v_3, v_4\}, \mathcal{B} = \{\{v_1, v_2\}, \{v_1, v_3\}, \{v_2, v_3\}, \{v_2, v_4\}, \{v_3, v_4\}\}.$
- $m(\{v_1, v_2\}) = 1$, $m(\{v_1, v_3\}) = 1$, $m(\{v_2, v_3\}) = 2$, $m(\{v_2, v_4\}) = 3$, $m(\{v_3, v_4\}) = 3.$

$$M = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 1 & 1 & 3 \\ 1 & 2 & 0 & 3 \\ 1 & 0 & 2 & 3 \end{pmatrix} \qquad D = \begin{pmatrix} v_1 & v_2 & v_3 & v_4 \\ 1 & 0 & 2 & 3 \\ 0 & 1 & -1 & 0 \end{pmatrix}$$

Property 1: *M* and *D* represent the same oa-matroid.

Property 2: $\operatorname{im}_{\mathbb{Z}}(M^T) = \operatorname{im}_{\mathbb{Z}}(D^T)$.

• A matrix of the form $D = \begin{bmatrix} I_r & N \end{bmatrix}$ for some integer matrix N is called a standard representative matrix.

Proposition (Pagaria 2020)

If M generates a rank r matroid and $m(\{v_1,\ldots,v_r\})=1$, then there is a unique(ish) standard representative matrix D that satisfies properties 1 and 2.

 \bullet Let Σ be a cell complex.

• Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be the top-dimensional boundary map.

	ABC	ABD	ACD	BCD
AB	/ 1	1	0	0 \
AB AC	-1	0	1	0
AD	0	-1	-1	0
BC	1	0	0	1
BD	0	1	0	-1
CD	0 /	0	1	1 /

• Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be the top-dimensional boundary map.

	ABC	ABD	ACD	BCD
AB	/ 1	1	0	0 \
AC	-1	0	1	0
AD	0	-1	-1	0
BC	1	0	0	1
BD	0	1	0	-1
CD	/ 0	0	1	1 /

Definition

 $oa(\Sigma)$ is the oa-matroid represented by ∂ .

• Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be the top-dimensional boundary map.

•				
	ABC	ABD	ACD	BCD
AB	/ 1	1	0	0 \
AC	-1	0	1	0
AD	0	-1	-1	0
BC	1	0	0	1
BD	0	1	0	-1
CD	/ 0	0	1	1 /

Definition

 $oa(\Sigma)$ is the oa-matroid represented by ∂ .

ullet For this example, the first 3 columns form a basis with multiplicity 1. By last slide's proposition, oa(Σ) allows a standard representative matrix.

• Let Σ be a cell complex. Choose an arbitrary orientation for Σ and let ∂ be the top-dimensional boundary map.

γ.				
	ABC	ABD	ACD	BCD
AB	/ 1	1	0	0 \
AC	-1	0	1	0
AD	0	-1	-1	0
BC	1	0	0	1
BD	0	1	0	-1
CD	/ 0	0	1	1 /

Definition

 $oa(\Sigma)$ is the oa-matroid represented by ∂ .

• For this example, the first 3 columns form a basis with multiplicity 1. By last slide's proposition, $oa(\Sigma)$ allows a standard representative matrix.

A	ABC	ABD	ACD	BCD
1	1	0	0	1 \
1	0	1	0	1
/	0	0	1	1 /

• A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

Definition

A regular matroid is an oa-matroid (E, \mathcal{B}, m) such that $m \equiv 1$.

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

Definition

A regular matroid is an oa-matroid (E, \mathcal{B}, m) such that $m \equiv 1$.

Proposition

For any graph G, oa(G) is a regular matroid.

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

Definition

A regular matroid is an oa-matroid (E, \mathcal{B}, m) such that $m \equiv 1$.

Proposition

For any graph G, oa(G) is a regular matroid.

• For any choice of basis on a regular matroid, we can rearrange columns to get a standard representative matrix $D = \begin{bmatrix} I_r & N \end{bmatrix}$.

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

Definition

A regular matroid is an oa-matroid (E, \mathcal{B}, m) such that $m \equiv 1$.

Proposition

For any graph G, oa(G) is a regular matroid.

- For any choice of basis on a regular matroid, we can rearrange columns to get a standard representative matrix $D = \begin{bmatrix} I_r & N \end{bmatrix}$.
- We can do the same for any choice of multiplicity 1 basis on an arbitrary oa-matroid.

- A graph G is also a cell complex, so oa(G) is a well-defined oa-matroid.
- There are many equivalent definitions for regular matroids. Here, I offer a new one:

Definition

A regular matroid is an oa-matroid (E, \mathcal{B}, m) such that $m \equiv 1$.

Proposition

For any graph G, oa(G) is a regular matroid.

- For any choice of basis on a regular matroid, we can rearrange columns to get a standard representative matrix $D = \begin{bmatrix} I_r & N \end{bmatrix}$.
- We can do the same for any choice of multiplicity 1 basis on an arbitrary oa-matroid.
- For now, let's not worry about oa-matroids without multiplicity 1 bases.

• Let D be a standard representative matrix $\begin{bmatrix} I_r & N \end{bmatrix}$ where N is $r \times n$.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

• Let D be a standard representative matrix $\begin{bmatrix} I_r & N \end{bmatrix}$ where N is $r \times n$.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

• Let \hat{D} be the matrix $\begin{bmatrix} -N^T & I_n \end{bmatrix}$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

• Let D be a standard representative matrix $\begin{bmatrix} I_r & N \end{bmatrix}$ where N is $r \times n$.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

• Let \hat{D} be the matrix $\begin{bmatrix} -N^T & I_n \end{bmatrix}$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

ullet \hat{D} relates to D in several ways that we will explore on the next slide.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

• Let's look at some properties of D and \hat{D} .

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

• The rows of \hat{D} are all orthogonal to each row of D.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

- The rows of \hat{D} are all orthogonal to each row of D.
- Oxley showed that \hat{D} represents the *dual matroid* of D.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

- The rows of \hat{D} are all orthogonal to each row of D.
- Oxley showed that \hat{D} represents the *dual matroid* of D.
- If we restrict D to any r columns and we restrict \hat{D} to the remaining n columns, the determinants of these submatrices are equal up to sign.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

- The rows of \hat{D} are all orthogonal to each row of D.
- Oxley showed that \hat{D} represents the dual matroid of D.
- If we restrict D to any r columns and we restrict \hat{D} to the remaining n columns, the determinants of these submatrices are equal up to sign.

$$D = \begin{pmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \end{pmatrix}$$

$$\hat{D} = \begin{pmatrix} -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{pmatrix}$$

- The rows of \hat{D} are all orthogonal to each row of D.
- Oxley showed that \hat{D} represents the dual matroid of D.
- If we restrict D to any r columns and we restrict \hat{D} to the remaining n columns, the determinants of these submatrices are equal up to sign.
- If we put D on top of \hat{D} , we get an invertible square matrix of the form:

$$\mathcal{D} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

Definition

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

Definition

The sandpile group of D, denoted S(D), is $\mathbb{Z}^{n+r}/\mathcal{D}^T\mathbb{Z}^{n+r}$.

• If D represents $oa(\Sigma)$ for some cell complex Σ , then $\mathcal{S}(D)$ is what Duval, Klivans, and Martin call the *cutflow group* of Σ .

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

Definition

- If D represents $oa(\Sigma)$ for some cell complex Σ , then $\mathcal{S}(D)$ is what Duval, Klivans, and Martin call the *cutflow group* of Σ .
- If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ .

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

Definition

- If D represents $oa(\Sigma)$ for some cell complex Σ , then $\mathcal{S}(D)$ is what Duval, Klivans, and Martin call the *cutflow group* of Σ .
- If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ . I have a separate talk on my website devoted to explaining why this is true.

• Let *D* be a standard representative matrix and let

$$\mathcal{D} = \begin{bmatrix} D \\ \hat{D} \end{bmatrix} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}.$$

Definition

- If D represents $oa(\Sigma)$ for some cell complex Σ , then S(D) is what Duval, Klivans, and Martin call the *cutflow group* of Σ .
- If Σ is a graph, S(D) is isomorphic to the traditional sandpile group of Σ . I have a separate talk on my website devoted to explaining why this is true.
- If D represents a regular matroid, $\mathcal{S}(D)$ is isomorphic to the usual regular matroid sandpile group.

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

$$D = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

$$D = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$

$$\begin{split} |\mathcal{S}(D)| &= \textit{m}(\{\textit{v}_1, \textit{v}_2\})^2 + \textit{m}(\{\textit{v}_1, \textit{v}_3\})^2 + \textit{m}(\{\textit{v}_2, \textit{v}_3\})^2 = \\ \det \left(\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right)^2 + \det \left(\begin{bmatrix} 1 & 3 \\ 0 & 2 \end{bmatrix} \right)^2 + \det \left(\begin{bmatrix} 0 & 3 \\ 1 & 2 \end{bmatrix} \right)^2 = 1^2 + 2^2 + 3^2 = 14 \end{split}$$

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

Theorem (Merino, 1999)

When D represents a regular matroid, |S(D)| = |B|.

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

Theorem (Merino, 1999)

When D represents a regular matroid, |S(D)| = |B|.

• In 2017, Backman, Baker, and Yuen defined a family of natural bijections between $\mathcal{S}(D)$ and \mathcal{B} for the regular matroid case.

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

Theorem (Merino, 1999)

When D represents a regular matroid, |S(D)| = |B|.

- In 2017, Backman, Baker, and Yuen defined a family of natural bijections between $\mathcal{S}(D)$ and \mathcal{B} for the regular matroid case.
- Recently, I defined a family of combinatorially meaningful maps $f: \mathcal{S}(D) \to \mathcal{B}$ such that for every $B \in \mathcal{B}$, we have $|f^{-1}(B)| = m(B)^2$.

Cellular Matrix-Tree Theorem

• Let D be a standard representative matrix that represents (E, \mathcal{B}, m) .

Theorem (Duval-Klivans-Martin, 2009)

$$|\mathcal{S}(D)| = \sum_{B \in \mathcal{B}} m(B)^2.$$

Theorem (Merino, 1999)

When D represents a regular matroid, |S(D)| = |B|.

- In 2017, Backman, Baker, and Yuen defined a family of natural bijections between $\mathcal{S}(D)$ and \mathcal{B} for the regular matroid case.
- Recently, I defined a family of combinatorially meaningful maps $f: \mathcal{S}(D) \to \mathcal{B}$ such that for every $B \in \mathcal{B}$, we have $|f^{-1}(B)| = m(B)^2$.
- This is the main result of this talk.

Fundamental Parallelepipeds

Definition

The fundamental parallelepiped of a square matrix M with column vectors v_1, \ldots, v_n is the set of points:

$$\left\{\sum_{i=1}^n a_i v_i \mid 0 \le a_i \le 1\right\}.$$

We use the notation $\Pi_{\bullet}(M)$ to indicate the fundamental parallelepiped of M.

Fundamental Parallelepipeds

Definition

The fundamental parallelepiped of a square matrix M with column vectors v_1, \ldots, v_n is the set of points:

$$\left\{\sum_{i=1}^n a_i v_i \mid 0 \le a_i \le 1\right\}.$$

We use the notation $\Pi_{\bullet}(M)$ to indicate the fundamental parallelepiped of M.

• The polytope $\Pi_{\bullet}(M)$ is also called the *zonotope* or *minkowski sum* of the columns of M.

Fundamental Parallelepipeds

Definition

The fundamental parallelepiped of a square matrix M with column vectors v_1, \ldots, v_n is the set of points:

$$\left\{\sum_{i=1}^n a_i v_i \mid 0 \le a_i \le 1\right\}.$$

We use the notation $\Pi_{\bullet}(M)$ to indicate the fundamental parallelepiped of M.

- The polytope $\Pi_{\bullet}(M)$ is also called the *zonotope* or *minkowski sum* of the columns of M.
- In order to construct our maps, we associate each basis with the fundamental parallelepiped of a particular matrix.

Basis Parallelepipeds

Let
$$D = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$
 which means that $\mathcal{D} = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & -2 & 1 \end{pmatrix}$.

Basis Parallelepipeds

Let
$$D = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$
 which means that $\mathcal{D} = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & -2 & 1 \end{pmatrix}$.

• For each basis $B \in \mathcal{B}$, we get a parallelepiped P(B) by replacing the first r or last n entries of each column of \mathcal{D} by 0 based on which columns make up B.

Basis Parallelepipeds

Let
$$D = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \end{pmatrix}$$
 which means that $\mathcal{D} = \begin{pmatrix} v_1 & v_2 & v_3 \\ 1 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & -2 & 1 \end{pmatrix}$.

• For each basis $B \in \mathcal{B}$, we get a parallelepiped P(B) by replacing the first r or last n entries of each column of \mathcal{D} by 0 based on which columns make up B (see example).

$$P(\{v_1, v_2\}) = \Pi_{\bullet} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \end{pmatrix} P(\{v_1, v_3\}) = \Pi_{\bullet} \begin{pmatrix} \begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix} \end{pmatrix}$$

$$P(\{v_2, v_3\}) = \Pi_{\bullet} \begin{pmatrix} \begin{bmatrix} 0 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & 0 & 0 \end{bmatrix} \end{pmatrix}$$

The Tile Associated with D

• We call $\bigcup_{B \in \mathcal{B}} P(B)$ the *tile associated with D*, denoted T(D).

The Tile Associated with D

• We call $\bigcup_{B \in \mathcal{B}} P(B)$ the *tile associated with D*, denoted T(D).

$$\mathcal{T}(D) = \Pi_{\bullet} \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \ \bigcup \Pi_{\bullet} \left(\begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix} \right) \bigcup \Pi_{\bullet} \left(\begin{bmatrix} 0 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & 0 & 0 \end{bmatrix} \right)$$

The Tile Associated with D

• We call $\bigcup_{B \in \mathcal{B}} P(B)$ the *tile associated with D*, denoted T(D).

$$T(D) = \Pi_{\bullet} \left(\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \right) \bigcup \Pi_{\bullet} \left(\begin{bmatrix} 1 & 0 & 3 \\ 0 & 0 & 2 \\ 0 & -2 & 0 \end{bmatrix} \right) \bigcup \Pi_{\bullet} \left(\begin{bmatrix} 0 & 0 & 3 \\ 0 & 1 & 2 \\ -3 & 0 & 0 \end{bmatrix} \right)$$

Some Fun With Blender

The Best Theorem I've Ever Proven

Theorem (M. 2020)

The parallelepipeds that make up T(D) have non-overlapping interiors.

The Best Theorem I've Ever Proven

Theorem (M. 2020)

The parallelepipeds that make up T(D) have non-overlapping interiors. Furthermore, the translates of T(D) by integer linear combinations of rows of \mathcal{D} form a non-overlapping tiling of \mathbb{R}^{r+n} .

A Tiling Demonstration (More Blender Fun)

• **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal.

• **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- ullet B_1 and B_2 are each collections of r columns (say $B_1=\{1,5\},\ B_2=\{3,5\}$).

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- What does a point $a \in P(B_1)^{\circ}$ look like?

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}, B_2 = \{3, 5\}$).
- What does a point $a \in P(B_1)^\circ$ look like?
 - $0 < a_i < 1$ and $\hat{a}_i = 0$ for $i \in B_1$
 - $0 < \hat{a}_i < 1$ and $a_i = 0$ for $i \notin B_1$.

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} a_1c_1 + a_5c_5 \\ \hat{a}_2\hat{c}_2 + \hat{a}_3\hat{c}_3 + \hat{a}_4\hat{c}_4 \end{bmatrix}}$$

$$a = \frac{1}{\hat{a}}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix} \quad a = \begin{bmatrix} 0.5 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.5 \begin{bmatrix} 7 \\ -2 \end{bmatrix} \\ 0.7 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} \\ 0.2 \begin{bmatrix} 1 \\ 0.2 \end{bmatrix} + 0.3 \begin{bmatrix} 1 \\ 0 \end{bmatrix} + 0.2 \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} 4 \\ -1 \\ 1 \\ 0.2 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- What does a point $b \in P(B_2)^{\circ}$ look like?

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \end{bmatrix}}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}, B_2 = \{3, 5\}$).
- What does a point $b \in P(B_2)^{\circ}$ look like?
 - $0 < b_i < 1$ and $\hat{b}_i = 0$ for $i \in B_2$
 - $0 < \hat{b}_i < 1$ and $b_i = 0$ for $i \notin B_2$.

$$\mathcal{D} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} \hat{b}_1 \hat{c}_1 + \hat{b}_2 \hat{c}_2 + \hat{b}_4 \hat{c}_4 \end{bmatrix}}$$

$$b = \frac{\begin{bmatrix} b_3 c_3 + b_5 c_5 \\ \hat{b}_1 \hat{c}_1 + \hat{b}_2 \hat{c}_2 + \hat{b}_4 \hat{c}_4 \end{bmatrix}}{\begin{bmatrix} \hat{b}_1 \hat{c}_1 + \hat{b}_2 \hat{c}_2 + \hat{b}_4 \hat{c}_4 \end{bmatrix}}$$

$$b = \frac{\begin{bmatrix} b_3c_3 + b_5c_5 \\ \hat{b}_1\hat{c}_1 + \hat{b}_2\hat{c}_2 + \hat{b}_4\hat{c}_4 \end{bmatrix}}{[\hat{b}_1\hat{c}_1 + \hat{b}_2\hat{c}_2 + \hat{b}_4\hat{c}_4]}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} 1 & 0 & 2 & 3 & 7 \\ 0 & 1 & -1 & 0 & -2 \\ -2 & 1 & 1 & 0 & 0 \\ -3 & 0 & 0 & 1 & 0 \\ -7 & 2 & 0 & 0 & 1 \end{bmatrix} b = \begin{bmatrix} 0.6 \begin{bmatrix} 2 \\ -1 \end{bmatrix} + 0.1 \begin{bmatrix} 7 \\ -2 \end{bmatrix} \\ 0.2 \begin{bmatrix} -2 \\ -3 \\ -7 \end{bmatrix} + 0.8 \begin{bmatrix} 1 \\ 0 \\ 2 \end{bmatrix} + 0.3 \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 1.9 \\ -0.8 \\ 0.4 \\ -0.3 \\ 0.2 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$\mathcal{D} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.
- Let $d_i = a_i b_i$ and $d = [d_1, d_2, d_3, d_4, d_5]$.

$$\mathcal{D} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.
- Let $d_i = a_i b_i$ and $d = [d_1, d_2, d_3, d_4, d_5]$.
- Let $\hat{d}_i = \hat{a}_i \hat{b}_i$ and $\hat{d} = [\hat{d}_1, \hat{d}_2, \hat{d}_3, \hat{d}_4, \hat{d}_5]$.

$$\mathcal{D} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.
- Let $d_i = a_i b_i$ and $d = [d_1, d_2, d_3, d_4, d_5]$.
- Let $\hat{d}_i = \hat{a}_i \hat{b}_i$ and $\hat{d} = [\hat{d}_1, \hat{d}_2, \hat{d}_3, \hat{d}_4, \hat{d}_5]$.

$$a - b = \frac{\left[d_1c_1 + d_2c_2 + d_3c_3 + d_4c_4 + d_5c_5\right]}{\left[\hat{d}_1\hat{c}_1 + \hat{d}_2\hat{c}_2 + \hat{d}_3\hat{c}_3 + \hat{d}_4\hat{c}_4 + \hat{d}_5\hat{c}_5\right]}$$

$$\mathcal{D} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}, B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.
- Let $d_i = a_i b_i$ and $d = [d_1, d_2, d_3, d_4, d_5]$.
- Let $\hat{d}_i = \hat{a}_i \hat{b}_i$ and $\hat{d} = [\hat{d}_1, \hat{d}_2, \hat{d}_3, \hat{d}_4, \hat{d}_5]$.

$$a - b = \frac{\begin{bmatrix} d_1c_1 + d_2c_2 + d_3c_3 + d_4c_4 + d_5c_5 \\ \hat{d}_1\hat{c}_1 + \hat{d}_2\hat{c}_2 + \hat{d}_3\hat{c}_3 + \hat{d}_4\hat{c}_4 + \hat{d}_5\hat{c}_5 \end{bmatrix}}{\begin{bmatrix} d \cdot r_1 \\ d \cdot r_2 \\ \hat{d} \cdot r_3 \\ \hat{d} \cdot r_4 \\ \hat{d} \cdot r_5 \end{bmatrix}} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

$$\mathcal{D} = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix} = \begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.
- Let $d_i = a_i b_i$ and $d = [d_1, d_2, d_3, d_4, d_5]$.
- Let $\hat{d}_i = \hat{a}_i \hat{b}_i$ and $\hat{d} = [\hat{d}_1, \hat{d}_2, \hat{d}_3, \hat{d}_4, \hat{d}_5]$.

$$a - b = \frac{\begin{bmatrix} d_1c_1 + d_2c_2 + d_3c_3 + d_4c_4 + d_5c_5 \\ \hat{d}_1\hat{c}_1 + \hat{d}_2\hat{c}_2 + \hat{d}_3\hat{c}_3 + \hat{d}_4\hat{c}_4 + \hat{d}_5\hat{c}_5 \end{bmatrix}}{\begin{bmatrix} r_1 \\ r_2 \\ r_3 \\ r_4 \\ r_5 \end{bmatrix}} = \frac{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}{\begin{bmatrix} c_1 & c_2 & c_3 & c_4 & c_5 \\ \hat{c}_1 & \hat{c}_2 & \hat{c}_3 & \hat{c}_4 & \hat{c}_5 \end{bmatrix}}$$

The Important Result: $d \cdot \hat{d} = 0$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n)\times(r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

- Case 1 $i \in B_1 \cap B_2$
- Case 2 $i \notin B_1 \cup B_2$
- Case 3 $i \in B_1 \setminus B_2$
- Case 4 $i \in B_2 \setminus B_1$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 1 $i \in B_1 \cap B_2$

 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - b_i) \cdot (0 - 0) = 0$

- Case 2 $i \notin B_1 \cup B_2$
- Case 3 $i \in B_1 \setminus B_2$
- Case 4 $i \in B_2 \setminus B_1$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 1 $i \in B_1 \cap B_2$

 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - b_i) \cdot (0 - 0) = 0$

• Case 2 $i \notin B_1 \cup B_2$

 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - 0) \cdot (\hat{a}_i - \hat{b}_i) = 0$

- Case 3 $i \in B_1 \setminus B_2$
- Case 4 $i \in B_2 \setminus B_1$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 1
$$i \in B_1 \cap B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - b_i) \cdot (0 - 0) = 0$$

• Case 2
$$i \notin B_1 \cup B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - 0) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 3
$$i \in B_1 \setminus B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - 0) \cdot (0 - \hat{b}_i) < 0$$

• Case 4
$$i \in B_2 \setminus B_1$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 1
$$i \in B_1 \cap B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - b_i) \cdot (0 - 0) = 0$$

• Case 2
$$i \notin B_1 \cup B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - 0) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 3
$$i \in B_1 \setminus B_2$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - 0) \cdot (0 - \hat{b}_i) < 0$$

• Case 4
$$i \in B_2 \setminus B_1$$

$$(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - b_i) \cdot (\hat{a}_i - 0) < 0$$

- **Setup:** \mathcal{D} is a nonsingular $(r+n) \times (r+n)$ integer matrix whose first r rows and last n rows are orthogonal. Label columns with c_i and \hat{c}_i (see below).
- B_1 and B_2 are each collections of r columns (say $B_1 = \{1, 5\}$, $B_2 = \{3, 5\}$).
- Assume there exist $a \in P(B_1)^{\circ}$ and $b \in P(B_2)^{\circ}$ such that a b = 0.

$$d \cdot \hat{d} = 0 \implies \sum_{i=1}^{r+n} (a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = 0$$

• Case 1
$$i \in B_1 \cap B_2$$
 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - b_i) \cdot (0 - 0) = 0$

• Case 2
$$i \notin B_1 \cup B_2$$
 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - 0) \cdot (\hat{a}_i - \hat{b}_i) = 0$

• Case 3
$$i \in B_1 \setminus B_2$$
 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (a_i - 0) \cdot (0 - \hat{b}_i) < 0$

• Case 4
$$i \in B_2 \setminus B_1$$
 $(a_i - b_i) \cdot (\hat{a}_i - \hat{b}_i) = (0 - b_i) \cdot (\hat{a}_i - 0) < 0$

Since $B_1 \neq B_2$ we have a contradiction!

The Full Theorem (Don't Worry, I Won't Prove It)

• Here's a reminder of the second part of the theorem:

The Full Theorem (Don't Worry, I Won't Prove It)

• Here's a reminder of the second part of the theorem:

Theorem (M. 2020)

The translates of T(D) by integer linear combinations of rows of \mathcal{D} form a non-overlapping tiling of \mathbb{R}^{r+n} .

• Here's a reminder of the second part of the theorem:

Theorem (M. 2020)

The translates of T(D) by integer linear combinations of rows of D form a non-overlapping tiling of \mathbb{R}^{r+n} .

• We can make an argument based on the volume of $\mathcal{T}(D)$ that if the translates do not overlap, they must form a tiling.

19/26

• Here's a reminder of the second part of the theorem:

Theorem (M. 2020)

The translates of T(D) by integer linear combinations of rows of D form a non-overlapping tiling of \mathbb{R}^{r+n} .

- We can make an argument based on the volume of T(D) that if the translates do not overlap, they must form a tiling.
- The proof of non-overlapping uses the same general idea as the proof on the previous slide. Instead of a-b=0, we have $a-b+\mathcal{D}^Tz=0$ for some integer vector z.

• Here's a reminder of the second part of the theorem:

Theorem (M. 2020)

The translates of T(D) by integer linear combinations of rows of D form a non-overlapping tiling of \mathbb{R}^{r+n} .

- We can make an argument based on the volume of T(D) that if the translates do not overlap, they must form a tiling.
- The proof of non-overlapping uses the same general idea as the proof on the previous slide. Instead of a-b=0, we have $a-b+\mathcal{D}^Tz=0$ for some integer vector z.
- One step of this proof relies on the relationship between rows and columns of

$$\mathcal{D} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}$$

19/26

• Here's a reminder of the second part of the theorem:

Theorem (M. 2020)

The translates of T(D) by integer linear combinations of rows of D form a non-overlapping tiling of \mathbb{R}^{r+n} .

- We can make an argument based on the volume of T(D) that if the translates do not overlap, they must form a tiling.
- The proof of non-overlapping uses the same general idea as the proof on the previous slide. Instead of a-b=0, we have $a-b+\mathcal{D}^Tz=0$ for some integer vector z.
- One step of this proof relies on the relationship between rows and columns of

$$\mathcal{D} = \begin{bmatrix} I_r & N \\ -N^T & I_n \end{bmatrix}$$

This theorem does not hold if we only assume orthogonality.

• D is a standard representative matrix associated with an oa-matroid (E, \mathcal{B}, m) .

Definition

• D is a standard representative matrix associated with an oa-matroid (E, \mathcal{B}, m) .

Definition

The sandpile group of D, denoted S(D), is $\mathbb{Z}^{n+r}/\mathcal{D}^T\mathbb{Z}^{n+r}$.

• Our goal is to define a map $f: \mathcal{S}(D) \to \mathcal{B}$ such that for each $B \in \mathcal{B}$, $|f^{-1}(B)| = m(B)^2$.

• D is a standard representative matrix associated with an oa-matroid (E,\mathcal{B},m) .

Definition

- Our goal is to define a map $f: \mathcal{S}(D) \to \mathcal{B}$ such that for each $B \in \mathcal{B}$, $|f^{-1}(B)| = m(B)^2$.
- Our tiling result says that we can identify an equivalence class of S(D) with a point of T(D) which is unique except at the boundary.

• D is a standard representative matrix associated with an oa-matroid (E,\mathcal{B},m) .

Definition

- Our goal is to define a map $f: \mathcal{S}(D) \to \mathcal{B}$ such that for each $B \in \mathcal{B}$, $|f^{-1}(B)| = m(B)^2$.
- Our tiling result says that we can identify an equivalence class of S(D) with a point of T(D) which is unique except at the boundary.
- To fix the boundary ambiguity, we choose a generic direction w and only include a boundary point z if $z + \epsilon w \in T(D)$ for all arbitrarily small ϵ .

• D is a standard representative matrix associated with an oa-matroid (E, \mathcal{B}, m) .

Definition

- Our goal is to define a map $f: \mathcal{S}(D) \to \mathcal{B}$ such that for each $B \in \mathcal{B}$, $|f^{-1}(B)| = m(B)^2$.
- Our tiling result says that we can identify an equivalence class of S(D) with a point of T(D) which is unique except at the boundary.
- To fix the boundary ambiguity, we choose a generic direction w and only include a boundary point z if $z + \epsilon w \in T(D)$ for all arbitrarily small ϵ .
- Let $f_w(z) = B$ if $z + w\epsilon \in P(B)$ for all arbitrarily small ϵ .

 D is a standard representative matrix associated with an oa-matroid (E, \mathcal{B}, m) .

Definition

The sandpile group of D, denoted S(D), is $\mathbb{Z}^{n+r}/\mathcal{D}^T\mathbb{Z}^{n+r}$.

- Our goal is to define a map $f: \mathcal{S}(D) \to \mathcal{B}$ such that for each $B \in \mathcal{B}$, $|f^{-1}(B)| = m(B)^2$.
- Our tiling result says that we can identify an equivalence class of S(D) with a point of T(D) which is unique except at the boundary.
- To fix the boundary ambiguity, we choose a generic direction w and only include a boundary point z if $z + \epsilon w \in T(D)$ for all arbitrarily small ϵ .
- Let $f_w(z) = B$ if $z + w\epsilon \in P(B)$ for all arbitrarily small ϵ .

Theorem (M. 2020)

For any choice of w not in the span of a facet of P(B), $|f_w^{-1}(B)| = m(B)^2$

• The simplest case is when n = r = 1.

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below.

- The simplest case is when n = r = 1.
- ullet Here, ${\cal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below. The translates of T(D) by integer linear combinations of (1, k) and (-k, 1) tile the plane.

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below.

• Let w = (1,1) be our choice of direction.

21/26

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below.

- Let w = (1,1) be our choice of direction.
- Nudge all points in this direction and see where they end up.

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below.

- Let w = (1,1) be our choice of direction.
- Nudge all points in this direction and see where they end up.
- ullet We obtain a representative from each of the 10 equivalence classes of $\mathcal{S}(D)$.

21/26

- The simplest case is when n = r = 1.
- ullet Here, ${\mathcal D}$ is of the form

$$\mathcal{D} = \begin{bmatrix} 1 & k \\ -k & 1 \end{bmatrix}.$$

• For k = 3, T(D) is shown below.

- Let w = (1,1) be our choice of direction.
- Nudge all points in this direction and see where they end up.
- We obtain a representative from each of the 10 equivalence classes of $\mathcal{S}(D)$.
- One of them is mapped to the basis of multiplicity 1. Nine of them are mapped to the basis of multiplicity 3.

• Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .

- Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .
- Here are some r = 2 examples computed using Sage.

- Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .
- Here are some r = 2 examples computed using Sage.

- Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .
- Here are some r = 2 examples computed using Sage.

$$D = \begin{bmatrix} 1 & 0 & 1 & 3 & -4 & 5 \\ 0 & 1 & 3 & 3 & 3 & -3 \end{bmatrix}$$

- Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .
- Here are some r = 2 examples computed using Sage.

$$D = \begin{bmatrix} 1 & 0 & 1 & 3 & -4 & 3 & 2 \\ 0 & 1 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

- Because of the structure of \mathcal{D} , we can also tile \mathbb{R}^r or \mathbb{R}^n instead of \mathbb{R}^{r+n} .
- Here are some r = 2 examples computed using Sage.

$$D = \begin{bmatrix} 1 & 0 & 1 & 3 & -4 & 3 & 2 \\ 0 & 1 & -3 & -2 & -1 & 0 & 1 \end{bmatrix}$$

• Let (E, \mathcal{B}) be a regular matroid represented by D.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).

23 / 26

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?
- There is no longer a canonical form for a representative matrix D.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?
- There is no longer a canonical form for a representative matrix D, and even with D, there is no canonical \hat{D} or \mathcal{D} .

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?
- There is no longer a canonical form for a representative matrix D, and even with D, there is no canonical \hat{D} or \mathcal{D} .
- Furthermore, for a given \mathcal{D} , our map from $\mathcal{S}(\mathcal{D}) \to \mathcal{B}$ no longer works.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?
- There is no longer a canonical form for a representative matrix D, and even with D, there is no canonical \hat{D} or \mathcal{D} .
- Furthermore, for a given \mathcal{D} , our map from $\mathcal{S}(\mathcal{D}) \to \mathcal{B}$ no longer works.
- ullet Nevertheless, we are able to get meaningful maps from $\mathcal{S}(\mathcal{D}^T) o \mathcal{B}$.

- Let (E, B) be a regular matroid represented by D.
- My result gives a bijection between $\mathcal{S}(D)$ and \mathcal{B} given a choice of direction vector.
- Backman, Baker, and Yuen previously defined such a bijection given a choice of acyclic circuit and cocircuit signatures.
- In fact, these two maps are equivalent (but don't give the same sandpile equivalence class representatives).
- What about when (E, \mathcal{B}, m) doesn't have a multiplicity 1 basis?
- There is no longer a canonical form for a representative matrix D, and even with D, there is no canonical \hat{D} or \mathcal{D} .
- Furthermore, for a given \mathcal{D} , our map from $\mathcal{S}(\mathcal{D}) \to \mathcal{B}$ no longer works.
- Nevertheless, we are able to get meaningful maps from $\mathcal{S}(\mathcal{D}^T) \to \mathcal{B}$.
- I'm really curious about the group $\mathcal{S}(\mathcal{D}^T)$.

Thanks For Listening!!!

Sources I

Spencer Backman, Matthew Baker, and Chi Ho Yuen. Geometric bijections for regular matroids, zonotopes, and ehrhart theory. arXiv preprint arXiv:1701.01051, 2017.

Art Duval, Caroline Klivans, and Jeremy Martin.

Critical groups of simplicial complexes.

Annals of Combinatorics, 17(1):53-70, Mar 2013.

Art Duval, Caroline Klivans, and Jeremy Martin.

Cuts and flows of cell complexes.

Journal of Algebraic Combinatorics, 41(4):969–999, 2015.

Chris Godsil and Gordon Royle.

Algebraic Graph Theory, volume 207.

Springer-Verlag New York, 2001.

Gil Kalai.

Enumeration of q-acyclic simplicial complexes.

Israel Journal of Mathematics, 45(4):337–351, 1983.

Sources II

Caroline Klivans.

The Mathematics of Chip firing.

Chapman and Hall, 2018.

 ${\sf James}\ {\sf G}\ {\sf Oxley}.$

Matroid theory, volume 3.

Oxford University Press, USA, 2006.

Roberto Pagaria.

Orientable arithmetic matroids.

Discrete Mathematics, 343(6):111872, 2020.

Chi Ho Yuen.

Geometric Bijections of Graphs and Regular Matroids.

PhD thesis, 2018.