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Abstract. We study involutions on K3 surfaces under conjuga-
tion by derived equivalence and more general relations, together
with applications to equivariant birational geometry.

1. Introduction

The structure of AutDb(X), the group of autoequivalences of the
bounded derived category Db(X) of a K3 surface X, is very rich but
well-understood only when the Picard group Pic(X) has rank one
[BB17]. The automorphism group Aut(X) of X lifts to AutDb(X),
and one may consider the problem of classification of finite subgroups
G ⊂ Aut(X) up to conjugation – either by automorphisms, derived
equivalence, or even larger groups. This problem is already interesting
for cyclic G, and even for involutions, e.g., Enriques or Nikulin invo-
lutions. There is an extensive literature classifying these involutions
on a given K3 surface X: topological types, moduli spaces of polarized
K3 surfaces with involution, and the involutions on a single X up to
automorphisms, see, e.g., [AN06], [vGS07], [Oha07], [SV20], [Zha98].

Here we investigate involutions up to derived equivalence, i.e., de-
rived equivalences respecting involutions. Our interest in “derived”
phenomena was sparked by a result in [Sos10]—there exist complex con-
jugate, derived equivalent nonisomorphic K3 surfaces—as well as our
investigations of arithmetic problems on K3 surfaces [HT17], [HT23].

One large class of involutions σ : X → X are those whose quotient
Q = X/σ is rational. Examples include Q a del Pezzo surface and
X → Q a double cover branched along a smooth curve B ∈ | − 2KQ|.
We may allowQ to have ADE surface singularities away fromB, orB to
have ADE curve singularities; then we takeX as the minimal resolution
of the resulting double cover of Q. These were studied by Alexeev and
Nikulin in connection with classification questions concerning singular
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del Pezzo surfaces [AN06]. Our principal result here (see Section 4) is
that

• equivariant derived equivalences of such (X, σ) are in fact equi-
variant isomorphisms (see Corollary 4.2).

Our study of stable equivalence of lattices with involution leads us
to a notion of skew equivalence, presented in Section 7. Here, duality
interacts with the involution which is reflected in a functional equations
for the Fourier-Mukai kernel. Explicit examples, for anti-symplectic
actions with quotients equal to P2, are presented in Section 8.

Next, we focus on Nikulin involutions ι : X → X, i.e., involutions
preserving the symplectic form, so that the resolution of singularities Y
of the resulting quotient X/ι is a K3 surface. A detailed study of such
involutions can be found in [vGS07]. In addition to the polarization
class, the Picard group Pic(X) contains the lattice E8(−2); van Geemen
and Sarti describe the moduli and the geometry in the case of minimal
Picard rank rkPic(X) = 9. In Section 9, we extend their results to
higher ranks, and

• exhibit nontrivial derived equivalences between Nikulin involu-
tions (Proposition 9.3).

These, in turn, allow us to construct in Section 10 examples of equivari-
ant birational isomorphisms ϕ : P4 99K P4 with nonvanishing invariant
CG(ϕ), introduced in [LSZ23], [LS24] and extended to the equivariant
context in [KT22].

The case of Enriques involutions ϵ : X → X, i.e., fixed-point free
involutions, so that the resulting quotient X/ϵ is an Enriques surface,
has also received considerable attention. There is a parametrization of

such involutions in terms of the Mukai lattice H̃(X), and an explicit
description of conjugacy classes, up to automorphisms Aut(X), in in-
teresting special cases, e.g., for K3 surfaces of Picard rank 11, Kummer
surfaces of product type, general Kummer surfaces, or singular K3 sur-
faces [Kon92], [Oha07], [Ser05], [SV20]. In Section 11 we observe that

• the existence of an Enriques involution on a K3 surface X im-
plies that every derived equivalent surface is equivariantly iso-
morphic to X (Propositions 11.2 and 11.3);
• while there are no nontrivial equivariant derived autoequiva-
lences, we exhibit nontrivial orientation reversing (i.e., skew)
equivalences, e.g., on singular K3 surfaces.
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2. Lattice results

We recall basic terminology and results concerning lattices: torsion-
free finite-rank abelian groups L together with a nondegenerate integral
quadratic form (·, ·), which we assume to be even. Basic examples are

U =

(
0 1
1 0

)
and positive definite lattices associated with Dynkin diagrams (denoted
by the same letter).

We write L(2), when the form is multiplied by 2. We let

d(L) := L∗/L

be the discriminant group and

qL : d(L)→ Q/2Z

the induced discriminant quadratic form.

Nikulin’s form of Witt cancellation:

Proposition 2.1. [Nik79b, Cor. 1.13.4] Given an even lattice L, L⊕U
is the unique lattice with its signature and discriminant quadratic form.

If lattices L1 and L2 are stably isomorphic – become isomorphic after
adding unimodular lattices of the same signature – then

L1 ⊕ U ≃ L2 ⊕ U.

Nikulin stabilization result: Given a lattice L, write L⊗Zp for the
induced p-adic quadratic form. The genus of L is the collection of all
lattices equivalent to L over Zp for each prime p and over R. Stably
equivalent lattices are in the same genus. The p-primary part of d(L)
depends only on L⊗Zp and is written d(L⊗Zp). We use qL⊗Zp for the
induced discriminant quadratic form on d(L ⊗ Zp), with values in the
p-primary part of Q/Z for odd p; when L is even and p = 2 it takes
values in the 2-primary part of Q/2Z. For a finitely generated abelian
group A, let ℓ(A) denote the minimal number of generators.
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Proposition 2.2. [Nik79b, Thm. 1.14.2] Let L be an even indefinite
lattice satisfying

• rank(L) ≥ ℓ(d(L⊗ Zp)) + 2 for all p ̸= 2;

• if rank(L) = ℓ(d(L⊗Z2)) then qL⊗Z2 contains u
(2)
+ (2) or v

(2)
+ (2)

as a summand, i.e., the discriminant quadratic forms of

U(2)(2) =

(
0 2
2 0

)
, V(2)(2) =

(
4 2
2 4

)
.

Then the genus of L admits a unique class and O(L) → O(qL) is sur-
jective.

Remark 2.3. [Nik79b, Rem. 1.14.5] The 2-adic condition can be achieved
whenever the discriminant group d(L) has (Z/2Z)3 as a summand.

Thus given a lattice L, any automorphism of (d(L), qL) may be
achieved via an automorphism of L ⊕ U. More precisely, given two
lattices L1 and L2 of the same rank and signature and an isomorphism

ϱ : (d(L1), qL1)
∼−→ (d(L2), qL2)

there exists an isomorphism

ρ : L1 ⊕ U
∼−→ L2 ⊕ U

inducing ϱ.

Nikulin imbedding result:

Proposition 2.4. [Nik79b, Cor. 1.12.3,Thm. 1.14.4] Let L be an even
lattice of signature (t+, t−) and discriminant group d(L). Then L ad-
mits a primitive embedding into a unimodular even lattice of signature
(ℓ+, ℓ−) if

• ℓ+ − ℓ− ≡ 0 mod 8;
• ℓ+ ≥ t+ and ℓ− ≥ t−;
• ℓ+ + ℓ− − t+ − t− > ℓ(d(L)), the rank of d(L).

This embedding is unique up to automorphisms if

• ℓ+ > t+ and ℓ− > t−;
• ℓ+ + ℓ− − t+ − t− ≥ 2 + ℓ(d(L)).

In particular, any even nondegenerate lattice of signature (1, 9) ad-
mits a unique embedding into the K3 lattice U⊕3 ⊕ E8(−1)⊕2.
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3. Mukai lattices and derived automorphisms

Throughout, we work over the complex numbers C. Let X be a
projective K3 surface and

Pic(X) ⊂ H2(X,Z) ≃ E8(−1)⊕2 ⊕ U3

its Picard lattice, a sublattice of a lattice of signature (3, 19), with
respect to the intersection pairing. The Picard lattice governs the au-
tomorphisms of X. The composition

ϖ : Aut(X)→ O(H2(X,Z))→ O(Pic(X))

has finite cyclic kernel [Nik79a, Kon92]. The image can be computed
explicitly, at least up to finite subgroups, in terms of Pic(X) [LP81,
§2]. Consider the subgroup generated by reflections in (−2)-classes,
i.e., indecomposable effective divisors of self-intersection −2; it acts
naturally on the positive cone in Pic(X)R. Then the image of ϖ is a
finite-index subgroup of those elements leaving invariant a fundamental
domain for this action, i.e. the ample cone. All possible finite G ⊂
Aut(X) have been classified, see [BH23]. Classification of Aut(X)-
conjugacy classes of elements or subgroups boils down to lattice theory
of Pic(X); we will revisit it in special cases below.

The transcendental lattice of X is the orthogonal complement

T (X) := Pic(X)⊥ ⊂ H2(X,Z).
This lattice plays a special role: two K3 surfaces X1, X2 are derived
equivalent if and only if there exists an isomorphism of lattices

T (X1)
∼−→ T (X2),

compatible with Hodge structures [Orl97]. Derived equivalence also
means that the lattices Pic(X1) and Pic(X2) belong to the same genus.
Over nonclosed fields, or in equivariant contexts, derived equivalence
is a subtle property, see, e.g., [HT17], [HT23].

We recall standard examples of Picard lattices of derived equivalent
but not isomorphic K3 surfaces

Remark 3.1. In Picard rank one: the number of nonisomorphic de-
rived equivalent surfaces is governed by the number of prime divisors of
the polarization degree 2d; see [HLOY04, Cor. 2.7] and Proposition 2.2.
The isomorphisms classes correspond to solutions of the congruence

(3.1) x2 ≡ 1 (mod 4d)

modulo ±1. When d > 1 the number of derived equivalent K3 surfaces
is 2τ(d)−1, where τ is the number of distinct prime factors of d.
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In Picard rank two: derived equivalences among lattice-polarized K3
surfaces of square-free discriminant are governed by the genera in the
class group of the corresponding real quadratic field [HLOY04, Sect. 3].

Here are instances where derived equivalence is trivial

Proposition 3.2. [HLOY04, Cor. 2.6, 2.7] Derived equivalence implies
isomorphism in each of the following cases:

• if the Picard rank is ≥ 12;
• if the surface admits an elliptic fibration with a section;
• if the Picard rank is ≥ 3 and the discriminant group of the
Picard group is cyclic.

We give a further example in Proposition 9.3.
Let

H̃(X) := H0(X,Z)(−1)⊕ H2(X,Z)⊕ H4(X,Z)(1)
be its Mukai lattice, a lattice of signature (4, 20), with respect to the
Mukai pairing. There is a surjective homomorphism [HMS09, Cor. 3]

AutDb(X)→ O+(H̃(X)) ⊂ O(H̃(X))

onto the group of signed Hodge isometries, a subgroup of the orthogonal
group of the Mukai lattice preserving orientations on the positive 4-
planes.
We retain the notation from [HT23, Cor. 3], where we discussed the

notion and basic properties of equivariant derived equivalences between
K3 surfaces. We recall:

Let X1 and X2 be K3 surfaces equipped with a generi-
cally free action of a finite cyclic group G. Then X1 and
X2 are G-equivariantly derived equivalent if and only if
there exists a G-equivariant isomorphism of their Mukai
lattices

H̃(X1)
∼−→ H̃(X2)

respecting the Hodge structures.

Note that the G-action is necessarily trivial on

H0(X,Z)(−1)⊕ H4(X,Z)(1).

Even in the event of an isomorphism X1 ≃ X2, equivariant derived
equivalences are interesting: indeed, there are actions of finite groups
G that are not conjugate in Aut(X) but are conjugate via AutDb(X)
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as the action of the latter group is visibly larger. See Proposition 9.6
for examples.

Let G be a finite group and X1 and X2 K3 surfaces with G-actions.
For simplicity, assume that G acts on T (Xi) via ±I. (This is the case if
the transcendental cohomology is simple.) Given a G-equivariant iso-
morphism T (X1) ≃ T (X2), can we lift to a G-equivariant isomorphism
of Mukai lattices

H̃(X1,Z) ≃ H̃(X2,Z),
where G acts trivially on the hyperbolic summand

U = H0 ⊕ H4?

Clearly the answer is NO. Suppose that G = C2 = ⟨ϵ⟩ and the
ϵ = −1 eigenspaces are stably isomorphic but not isomorphic. Adding
U does nothing to achieve the desired stabilization. In other words, U
is “too small”. We need to add summands where G acts nontrivially
to achieve stabilization across all the various isotypic components. See
Proposition 4.5 for more on this question.

4. Generalities concerning involutions on K3 surfaces

Let i : X → X be an involution on a complex projective K3 sur-
face, which acts faithfully on H2(X,Z) by the Torelli Theorem. It is
symplectic (resp. anti-symplectic) if

i∗ω = ω (resp. − ω),

where ω is a holomorphic two-form. Nikulin [Nik79a] showed that any
symplectic involution fixes eight isolated points and that all such in-
volutions are topologically conjugate; these are the Nikulin involutions
studied in Section 9. An involution without fixed points was classically
known to be an Enriques involution arising from a double cover X → S
of an Enriques surface.

The case of anti-symplectic involutions with fixed points is more
complicated. Nikulin enumerated 74 cases beyond the Enriques case;
see [AN06, BH23, AE22, Ale22] for details of the various cases.

Given an anti-symplectic involution i : X → X on a K3 surface, we
recall the Nikulin invariants (r, a, δ) [AE22, §2]: Let r denote the rank
of the lattice

S = H2(X,Z)i=1,

which is indefinite if r > 1. We are using the fact that transcendental
classes of X are anti-invariant under i, as the quotient X/i admits no
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holomorphic two-form. We write

T = H2(X,Z)i=−1 = S⊥

for the complementary lattice with signature (2, 20−r), which is indef-
inite if r < 20. The discriminant group d(S) ≃ d(T ) is a 2-elementary
group; its rank is denoted by a. This group comes with a quadratic
form

qS : d(S)→ Q/2Z.
The coparity δ equals 0 if qS(x) ∈ Z for each x ∈ d(S) and equals 1
otherwise.

We relate this to geometric invariants. For an anti-symplectic invo-
lution, there are no isolated fixed points so the fixed locus R = X i is
of pure dimension one or empty. Suppose there are k + 1 irreducible
components, with genera summing to g. Then we have cf. [AE22, p.5]

g = 11− (r + a)/2 k = (r − a)/2,
excluding the Enriques case (r, k, δ) = (10, 10, 0).
Nikulin classifies even indefinite 2-elementary lattices L. They are

determined uniquely by (r, a, δ) and O(L) → Aut(d(L)) is surjective.
In the definite case, a priori there are multiple classes in each genus
but this is not relevant for our applications. Indeed, the possibilities
include

• r = a = 1: X is a double cover of P2 branched along a sextic
plane curve.
• The case where T is definite (r = 20, a = 2, g = 0, k = 9), we
have d(T ) = Z/2Z⊕ Z/2Z thus is equal to(

2 0
0 2

)
.

Even in this case, automorphisms of the discriminant group are
realized by automorphisms of the lattice.

Theorem 4.1 (Alexeev-Nikulin). For each admissible set of invariants
(r, a, δ), there is a unique orthogonal pair of lattices (S,T) embedded in
the K3 lattice Λ, up to automorphisms of Λ. There are 75 such cases.

Corollary 4.2. Any equivariant derived equivalence of K3 surfaces
with anti-symplectic involutions induces an equivariant isomorphism
between the underlying K3 surfaces.

Proof. Suppose that (X1, i1) and (X2, i2) are derived equivalent, com-
patibly with their anti-symplectic involutions.
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Indeed, derived equivalence shows that the invariant (resp. anti-
invariant) sublattices of the Picard group are stably equivalent (resp.
equivalent):

Pic(X1)
i1=1 ⊕ U ≃ Pic(X2)

i2=1 ⊕ U, Pic(X1)
i1=−1 ≃ Pic(X2)

i2=−1.

Since the possibilities for the invariant sublattices are characterized by
their 2-adic invariants, we have

Pic(X1)
i1=1 ≃ Pic(X2)

i2=1.

We have already observed that all the possible isomorphisms between
their discriminants(

d(Pic(X1)
i1=1), q1

)
≃

(
d(Pic(X2)

i2=1), q2
)

are realized by isomorphisms of the lattices. In particular, there exists
a choice compatible with the isomorphism

H2(X1,Z)i1=−1 ∼→ H2(X2,Z)i2=−1

induced by the derived equivalence. Thus we obtain isomorphisms
on middle cohomology, compatible with the involutions. The Torelli
Theorem gives an isomorphism X1

∼→ X2 respecting the involutions.
□

Corollary 4.3. Let (X1, σ1) and (X2, σ2) denote K3 surfaces with invo-
lutions that are C2-equivariantly derived equivalent. If X1/σ1 is rational
then X2/σ2 is rational as well.

Indeed, the rationality of the quotient forces the involution to be
anti-symplectic.

Example 4.4. Having an anti-symmetric involution is not generally a
derived property. For example, consider Picard lattices

A1 =

(
2 13
13 12

)
A2 =

(
8 15
15 10

)
.

These forms are stably equivalent but not isomorphic. As in Re-
mark 3.1 – see [HT17, Sec. 2.3] for details – choose derived equivalent
K3 surfaces X1 and X2 with Pic(X1) = A1 and Pic(X2) = A2. Note
that A2 does not represent two and admits no involution acting via ±1
on d(A2); thus X2 does not admit an involution.

This should be compared with Proposition 11.2: Having an Enriques
involution is a derived invariant.
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We collect some lattice-theoretic observations that will serve as a
foundation for Section 7:

Proposition 4.5. Let (X1, i1) and (X2, i2) be K3 surfaces with invo-
lutions, both symplectic or anti-symplectic. Extend the involutions to
actions on the Mukai lattices

ĩj : H̃(Xj,Z), j = 1, 2,

where

ĩj|Hk =

{
i∗j if k = 2,

−I if k = 0, 4.

An equivalence of such actions, on Hodge structures of weight two,
corresponds to a triple

(1) an isomorphism of Hodge structures

t : T (X1)→ T (X2),

(2) an isomorphism of lattices

π+1 : Pic(X1)
i1=1 → Pic(X2)

i2=1,

(3) a stable equivalence of lattices

π−1 : Pic(X1)
i1=−1 ⊕ U→ Pic(X2)

i2=−1 ⊕ U,

satisfying the following conditions

• the isomorphisms induced by π±1 on discriminant groups agree
on the images

Pic(Xj)→ d(Pic(Xj)
ij=1)⊕ d(Pic(Xj)

ij=−1),

which are 2-elementary groups;
• the resulting isomorphism

Pic(X1)→ Pic(X2)

is compatible with t on discriminant groups.

This is proven through two applications of Nikulin’s lattice extension
theory, first to the Picard group and then to the full cohomology lattice.

Fixing T (Xj) and Pic(Xj)
ij=1, the possible equivalences are indexed

by isomorphisms π−1 restricting to the identity on the distinguished
2-elementary subgroups. Applying Nikulin stabilization, the equiva-
lent Mukai lattices, with these data, are indexed by the stable iso-
morphism classes of the anti-invariant Picard groups, where the stable
isomorphism restricts to the identity on the distinguished 2-elementary
subgroup of the their discriminant groups.
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Corollary 4.6. Suppose the anti-invariant Picard lattice P is unique

in its genus. Then the possible Mukai lattices (H̃, ĩ) with P are in-
dexed by automorphisms of d(P ) restricting to the identity on the two-
elementary subgroup.

This is an equivariant version of the counting results of [HLOY04].

5. Cohomological Fourier-Mukai transforms

Let X1 and X2 be smooth projective complex K3 surfaces. A funda-
mental result of Orlov [Orl97] shows that any equivalence

Φ : Db(X1)→ Db(X2)

arises from a kernel K ∈ Db(X1 ×X2) through a Fourier-Mukai trans-
form

ΦK : Db(X1) → Db(X2)
E 7→ π2∗(π

∗
1E ⊗ K).

All the indicated functors are taken in their derived senses. Given
such a kernel, there is also a Fourier-Mukai transform in the opposite
direction

ΨK : Db(X2) → Db(X1)
E 7→ π1∗(π

∗
2E ⊗ K).

Mukai has computed the kernel of the inverse

Φ−1
K = ΨK∨[2]

i.e., a shift of the dual to our original kernel. See [Muk87, 4.10],
[BBHR97, § 4.3], and [Huy06, p. 133] for details. The computation
relies on Grothendieck-Serre Duality, so the appearance of the dualiz-
ing complex is natural. This machinery [Huy06, § 3.4] also allows us
to analyze how Fourier-Mukai transforms interact with taking duals:

ΦK(E∨) = π2∗(K ⊗ π∗
1(E∨))

= ((π2∗(K∨ ⊗ π∗
1E))∨)[−2]

= ((ΦK∨E)[2])∨

= (ΦK∨[2]E)∨

Suppose that X1 and X2 are equivalent through an isomorphism

X2 =MH(X1, v1),

i.e., the moduli space of sheaves Ep, p ∈ X2, on X1 with Mukai vector

v1 = v(Ep) = (r,D, s) ∈ H̃(X,Z),
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Gieseker-stable with respect to some polarization H on X1. Here r
is the rank of Ep, D = c1(Ep), and s = χ(Ep) − r. We assume there

exists another Hodge class v′ ∈ H̃(X1,Z) such that ⟨v, v′⟩ = 1; in
particular, v is primitive. (For information on how to realize derived
equivalences via such moduli spaces, see [Muk87, §4,5] and [Huy08,
p. 385], the discussion following Proposition 4.1.) Let E → X1 × X2

denote a universal sheaf; by simplicity of the sheaves, E is unique up to
tensoring by a line bundle from X2. We may use E as a kernel inducing
a derived equivalence between X1 and X2 [Huy06, 10.25]. Our formulas
for inverses are compatible with tensoring the kernel by line bundles
from one of the factors.

In searching for Fourier-Mukai kernels, cohomological Fourier-Mukai
transforms play a crucial role. Let ωi ∈ H4(Xi,Z) denote the point
class and set [Muk87, §1], [Huy06, p. 128]

ZK := π∗
1(1 + ω1) ch(K)π∗

2(1 + ω2) ∈ H∗(X1 ×X2,Z),
where the middle term is the Chern character. Then ZK induces an
integral isomorphism of Hodge structures

ϕK : H̃(X1,Z)
∼−→ H̃(X2,Z)

compatible with Mukai pairings; this is called the cohomological Fourier-
Mukai transform. For E ∈ Db(X1), we have the identity

ϕK(v(E)) = v(ΦK(E)).
We use ψK to denote the cohomological transform of ΨK.

Most cohomological Fourier-Mukai transforms are induced by kernels

Proposition 5.1. [Orl97, HMS09] Given an orientation-preserving in-
tegral Hodge isometry

ϕ : H̃(X1,Z)→ H̃(X2,Z)
there exists a derived equivalence

ΦK : Db(X1)→ Db(X2)

such that ϕ is the cohomological Fourier-Mukai transform of ΦK.

Suppose that (X1, f1) is a polarized K3 surface of degree 2r0s, where
r0 and s are relatively prime positive integers. Let d0 be an integer
prime to r0 and fix the isotropic Mukai vector

v0 = (r0, d0f1, d
2
0s) ∈ H̃(X1,Z).

Since r0 and d20s are relatively prime, there exists a Mukai vector v′ =
(m, 0, n) such that ⟨v0, v′⟩ = 1. Let X2 = Mf1(X1, v0) be the moduli
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space of torsion-free sheaves with Mukai vector v0, Gieseker-stable with
respect to f1 – also a K3 surface. Choose a universal sheaf E → X1×X2.
Our goal is to describe the induced isomorphism

ϕE : H̃(X1,Z)
∼→ H̃(X2,Z).

Following [HL10, Ch. 8] and [Yos99, §2], the polarization on X2 is given
by

det(π2∗(E ⊗ OH(s(r0 − 2d0))))
∨, H ∈ |f1|,

a primitive ample divisor f2 on X2. More generally, we have an iso-
morphism of Hodge structures

H2(X2,Z) = (v∨0 )
⊥/Zv∨0 ,

where the perpendicular subspace is taken with respect to the Mukai
pairing.

Proposition 5.2. [Yos99] Let (X1, f1) and (X2, f2) be K3 surfaces of
Picard rank one with X2 ≃ Mf1(X1, v0) as above. Choose integers d1
and ℓ such that sd0d1 − r0ℓ = 1 and take K = E ⊗ π∗

2L for some line
bundle L on X2. With respect to the bases

(1, 0, 0), (0, fj, 0), (0, 0, 1) ∈ H̃(Xj,Z) ∩ H̃1,1(Xj)

the matrix of the cohomological Fourier-Mukai transform takes the form

(5.1) ϕK :=

d20s 2d0sr0 r0
d0ℓ 2d0d1s− 1 d1
ℓ2r0 2d1sℓr0 d21s

 .

The inverse is obtained reversing the sign of the middle basis vector
and interchanging the role of d0 and d1:d20s 2d0sr0 r0

d0ℓ 2d0d1s− 1 d1
ℓ2r0 2d1sℓr0 d21s

 d21s −2d1sr0 r0
−d1ℓ 2d0d1s− 1 −d0
ℓ2r0 −2d0sℓr0 d20s

 = I.

The formula

ϕKψK∨ = I

is the cohomological realization of the identity

ΦKΨK∨[2] = I.

The third column of ϕ−1
K is the Mukai vector v∨0 , as

Φ−1
K (Op) = E∨p , p = [Ep] ∈ X2 =Mf1(X1, v).
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Remark 5.3. The assumption in Proposition 5.2 on the rank of the
Picard groups is not too restrictive, as Proposition 5.1 allows us to
specialize from the rank-one case. Derived equivalences satisfying (5.1)
exist provided the primitive cohomology groups are isomorphic

H2(X1,Z) ⊃ f⊥
1 ≃ f⊥

2 ⊂ H2(X2,Z)

as integral Hodge structures. However, these are not given as kernels
associated with explicit moduli spaces of sheaves Gieseker-stable with
respect to some polarization.

Example 5.4. Suppose that (X1, f1) is a degree 12 K3 surface. Con-
sider the isotropic Mukai vector v = (2, f1, 3) so that

X2 :=Mf1(X1, v)

is also a K3 surface derived equivalent to X1. Taking

r0 = 2, s = 3, d0 = 1, d1 = ℓ = 1,

we obtain

(1, 0, 0) 7→ (3, f2, 2)

(0, f1, 0) 7→ (12, 5f2, 12)

(0, 0, 1) 7→ (2, f2, 3)

with matrix

(5.2) φ :=

3 12 2
1 5 1
2 12 3

 .

The determinant is 1 with one eigenvector (1, 0,−1) with eigenvalue 1;
thus this is orientation preserving. Note that

(2,−f1, 3) 7→ (0, 0, 1)

whence

X1 =Mf2(X2, (2, f2, 3)), X2 =Mf2(X1, (2,−f1, 3)).

The fact that (1, 0,−1) has eigenvalue 1 gives

X
[2]
1

∼
99K X [2]

2 .
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6. Locally-free kernels and wall-crossing

For applications to skew equivalence, discussed in Section 7, we re-
quire derived equivalences between K3 surfaces X1 and X2 induced by
locally-free kernels

E → X1 ×X2.

Many equivalences do not arise in this way.

Example 6.1. Suppose that X1 = X2 = X and consider the equiv-
alence arising by interpreting X as the moduli space of ideal sheaves
Ix, x ∈ X. These sheaves are not locally-free.

We refer the reader to [HL10, §1.2] for the definitions and background
on µ-stable sheaves and relations to Gieseker stability. We use the
implications [HL18, Lemma 1.2.13]

µH-stable⇒ stable wrt H ⇒ semistable wrt H ⇒ µH-semistable.

Now µ-stable sheaves on K3 surfaces are typically locally-free: Let
E be a simple sheaf on a K3 surface X, with v(E) isotropic, such
that µH-stable for some polarization H. Then E is locally-free, with
the exception of ideal sheaves Ix [Muk87, 3.10], [HL18, 6.1.9]. The
problem is that moduli spacesMµs

H (X, v) of such sheaves are not always
compact, when there are strictly µH-semistable sheaves.

We recall criteria guaranteeing that µ stability and semistability co-
incide. Let v = (r,D, s) be a primitive isotropic Mukai vector of rank
r > 0 for a K3 surface X. Assume that D is primitive and H is a
polarization avoiding “walls”, i.e., hyperplanes expressible in the form
ξ⊥ for suitable 0 ̸= ξ ∈ D⊥. Then we have, by [HL10, 4.C.3],

Mµs
H (X, v) =Mµss

H (X, v).

The ξ that arise may be characterized in terms of r [HL10, 4.C.2]:

Example 6.2. Suppose that r = 2 and E is strictly µH-semistable.
One possibility is extensions

0→ OX(L)→ E → OX(D − L)→ 0,

where L is a divisor with

H · L = H · (D − L), dimExt1(OX(D − L),OX(L)) = 2.

Here ξ = 2L−D ∈ H⊥ satisfies ξ2 = −8. Writing ŝ = v(L) we have:

v ŝ
v 0 0
ŝ 0 −2
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Thus ŝ gives rise to a (−2)-class in the Picard group of MH′(X, v)
for H ′ a polarization outside the walls; typically this is the class of a
rational curve isomorphic to P(Ext1(OX(D − L),OX(L))), contracted
in Mµss

H (X, v) with complement Mµs
H (X, v).

The other possibility is extensions

(6.1) 0→ OX(L)→ E → Ix(D − L)→ 0,

where x ∈ X and L is a divisor

H · L = H · (D − L), dimHom(L,E) = 1.

Here ξ = 2L−D ∈ H⊥ satisfies ξ2 = −4, writing ŝ = v(L) we have:

v ŝ
v 0 −1
ŝ −1 −2

Here Mµs
H (X, v) = ∅ reflecting the fact that the extension (6.1) may be

trivial or nontrivial. The resulting coarse moduli space is isomorphic
to X; this is called a “totally semistable” wall.

This dichotomy in the wall types is typical and explained in [Bri08,
§12] (for two-dimensional moduli spaces) and [BM14, Th. 5.7] (in gen-
eral); we are grateful to Bayer for pointing out this framework. The
possible walls are all associated with spherical classes ŝ with v(ŝ)2 = −2
of two types:

• contracting walls:
v ŝ

v 0 0
ŝ 0 −2

where Mµss
H (X, v) has a contractible (−2)-class in its Picard

group;
• totally semistable walls:

v ŝ
v 0 −r
ŝ −r −2

, r ≥ 1,

where Mµs
H (X, v) is empty but the coarse moduli space is left

unchanged.

Bridgeland [Bri08] elucidates the typical behavior; we refer the reader
to [BM14, §6] for details of the derived equivalences associated with
wall crossing arising as compositions of spherical twists associated the
(−2)-classes.
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Example 6.3. Mukai [Muk87, 3.8] offers examples of the second type.
Let F be a rigid vector bundle with v(F ) = ŝ, r its rank, and E the
kernel of evaluation at a skyscraper sheaf at x ∈ X:

0→ E → F⊕r → C(x)→ 0.

Note that E has local cohomology at x and thus cannot be locally-free.

Suppose that the polarization varies over the ample cone. As we
cross walls of either type, the moduli spaces associated with adjacent
chambers are naturally isomorphic. Even for a contracting wall, the
minimal resolution of the nodal moduli space is naturally isomorphic
to moduli spaces associated with each side. Since the ample cone is
simply-connected, for all ample H1 and H2 we obtain natural isomor-
phisms

(6.2) βH2,H1 :M
µss
H1

(X, v)
∼→Mµss

H2
(X, v);

see the discussion following [BM14, Th. 1.1]. This is an instance of the
general phenomenon that wall-crossing induces birational maps among
moduli spaces of vector bundles on surfaces [HL10, 4.C.7]. However,
the universal sheaves over these moduli spaces – and the derived equiv-
alences they induce – do vary from chamber to chamber (see[BM14,
Th. 1.1(b)]). In particular, explicit formulas as in Proposition 5.2 are
not available for higher rank K3 surfaces.

An application of wall-crossing, and a template for our results in
Section 7, is the following result of Huybrechts [Huy08, Prop. 4.1]: Let
X1 and X2 be derived equivalent K3 surfaces. Then there exists a
moduli space of µH-stable locally-free sheaves with universal family

E →Mµs
H (X2, v)×X2

and an isomorphism X1 ≃Mµs
H (X2, v).

7. Orientation reversing conjugation

We continue to assume that i is an anti-symplectic involution on a
K3 surface X. As we have seen,

T (X) ⊂ H2(X,Z)i=−1,

with complement Pic(X)i=−1, which is negative definite by the Hodge
index theorem.

Recall that Orlov’s Theorem [Orl97, §3] asserts that for K3 surfaces
(without group action) isomorphisms of transcendental cohomology lift
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to derived equivalences. Given K3 surfaces (X1, i1) and (X2, i2) with
anti-symplectic involutions of the same type in the sense of Alexeev-
Nikulin, the existence of an isomorphism

T (X1)
∼→ T (X2)

seldom induces an equivariant derived equivalence; a notable exception
is the case where the anti-invariant Picard group has rank zero or one.
We only have that

Pic(X1)
i1=−1, Pic(X2)

i2=−1

are stably equivalent – compatibly with the isomorphism on the dis-
criminant groups of the transcendental lattices – but not necessarily
isomorphic.

In light of this, we propose an orientation reversing conjugation of
actions, with a view toward realizing isomorphisms of transcendental
cohomology.

Assume that Pic(X1)
i1=−1 and Pic(X2)

i2=−1 are not isomorphic, so
there is no C2-equivariant derived equivalence

Db(X1)
∼→ Db(X2)

taking i1 to i2, by Corollary 4.2. However, let

dualj : D
b(Xj)

∼→ Db(Xj), j = 1, 2,

denote the involution

E∗ 7→ E∨∗ .
Note that shift and duality commute with each other and with any
automorphism of the K3 surface. The action of dualj on the Mukai

lattice H̃(Xj,Z) is trivial in degrees 0 and 4 and multiplication by −1 in
degree two. Recall that shift acts via −1 in all degrees, so composition
with dualj is trivial in degree 2 and multiplication by −1 in degrees 0
and 4.

We propose a general definition and then explain how it is related
to our analysis of quadratic forms with involution:

Definition 7.1. Let (X1, i1) and (X2, i2) be smooth projective vari-
eties with involution, of dimension n with trivial canonical class. They
are skew equivalent if there is a kernel K on X1 × X2, inducing an
equivalence between X1 and X2, and a quasi-isomorphism

(7.1) (i∗1, i
∗
2)K

∼→ K∨[n].
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Note that dualization coincides with the relative dualizing complex
for both projections π1 and π2. The quasi-isomorphism (7.1) is involu-
tive

K 7→ K∨[n] 7→ (K∨[n])∨[n] ≃ K,
i.e., (i1, i2) takes K to the kernel inducing the inverse of ΦK. Since K is
simple and the base field is algebraically closed, the quasi-isomorphism
may be normalized so this composition is the identity.

Our first property follows straight from the definition:

Proposition 7.2. Suppose that (X1, i1) and (X2, i2) are as specified in
Definition 7.1 and K induces a skew equivalence between them. Con-
sider line bundles L1 and L2 on X1 and X2 that are anti-invariant
under i1 and i2

i∗jLj ≃ L∨
j .

Then K ⊗ (L1 ⊠ L2) also induces a skew equivalence.

Our next property makes explicit the behavior under duality:

Proposition 7.3. Let (X1, i1) and (X2, i2) be K3 surfaces equipped
with involutions. Suppose that K is a kernel inducing an equivalence
between X1 and X2, with induced Fourier-Mukai transforms

ΦK : Db(X1)→ Db(X2), ΨK : Db(X1)→ Db(X2).

Then the following are equivalent:

• ΦK dual1 i
∗
1 = dual2 i

∗
2ΦK;

• i∗1 = ΨKi
∗
2ΦK;

• K induces a skew equivalence between (X1, i1) and (X2, i2).

Proof. Recall the interpretations of duality and inverses of Fourier-
Mukai equivalences in Section 5. Let Tj denote the shift on Xj. Ap-
plying duality gives to the first expression gives

T−2
2 dual2ΦK∨i∗1 = dual2 i

∗
2ΦK

whence

(7.2) T 2
2ΦK∨i∗1 = i∗2ΦK.

This is equivalent to

ΨKΦK∨i∗1 = ΨKT
−2
2 i∗2ΦK

and
T−2
2 i∗1 = ΨKT

−2
2 i∗2ΦK

which is the same as
i∗1 = ΨKi

∗
2ΦK.
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Now formula (7.2) is equivalent to

T 2
2ΦK∨ = i∗2ΦKi

∗
1

i.e., applying i∗1 × i∗2 transforms K to K∨[2]. □

The second item in Proposition 7.3 immediately yields:

Corollary 7.4. Skew equivalence is an equivalence relation on K3 sur-
faces with involution.

Suppose again that X1 and X2 are K3 surfaces and K = E [1] for a
universal vector bundle

E → X1 ×X2

associated with an isomorphism X1 = Mv(X2). Then relation (7.1)
(with n = 2) translates into

(7.3) i∗2Ei1(x1) ≃ (Ex1)
∨.

Theorem 7.5. Let (X1, i1) and (X2, i2) be K3 surfaces with involu-
tions. Then the following are equivalent

• (X1, i1) and (X2, i2) are skew derived equivalent;
• there exists an orientation-preserving equivalence of Mukai lat-
tices

ϕ : H̃(X1,Z) −→ H̃(X2,Z),
satisfying

(7.4) ϕ(i∗1(v
∨)) = (i∗2ϕ(v))

∨.

As duality and pullback commute with each other, the order of these
operations in (7.4) is immaterial. Furthermore, if ϕ satisfies this rela-
tion then so does −ϕ.

Remark 7.6. We are not asserting that each cohomological equiv-
alence satisfying (7.4) arises from a skew equivalence. Suppose that
X1 = X2 = X with the same involution i. Consider the spherical twist
associated with OX with kernel I∆[1] and cohomology matrix

(7.5) τOX
:=

 0 0 −1
0 I 0
−1 0 0

 .

Neither τOX
nor −τOX

is obviously realized by a kernel with the requi-
site self-duality property. Of course, the identity induces a skew equiv-
alence of (X, i) with itself! Suppose now that (X1, i1) and (X2, i2) are
arbitrary K3 surfaces with involution. Given ϕ satisfying (7.4), we may



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 21

pre-compose or post-compose with τOX1
or τOX2

to get another matrix
with the same property.

Proof of Theorem 7.5. The forward implication is clear. Indeed, the
cohomological Fourier-Mukai transform ϕK of a skew equivalence sat-
isfies

(i1, i2)
∗ϕK = ϕK∨

but ϕK∨ differs from ϕK by the involution acting via +1 on H0 and H4

and −1 on H2. Thus

ϕK : H̃(X1,Z) −→ H̃(X2,Z)

satisfies relation (7.4).
For the reverse implication, we consider the cohomological Fourier-

Mukai transform

ϕ : H̃(X1,Z) −→ H̃(X2,Z).
Set

v0 := ϕ(0, 0, 1) = (r, aℓ, s),

where ℓ ∈ Pic(X2) is primitive and a ∈ N.
• The relation (7.4) implies that i∗2ℓ = −ℓ, which means that
ℓ2 < 0 if ℓ ̸= 0. (The Hodge index theorem implies that the
intersection form on the anti-invariant divisors is negative defi-
nite.)
• Writing ϕ(1, 0, 0) = (r′, D′, s′) we have

a(ℓ ·D′)− rs′ − sr′ = −1

whence gcd(r, s, aℓ ·D′) = 1 for some anti-invariant divisor D′

on X2. Hence gcd(r, s, a) = 1 as well.
• If ℓ ̸= 0 then both r and s are nonzero as v0 is isotropic. If ℓ = 0
then r = 0 or s = 0 but both cannot vanish. After applying a
twist τOX2

we may assume that r ̸= 0.
• If r < 0, we may replace ϕ by −ϕ. From now on, we therefore
assume r > 0.

We follow §4 of [Huy08] to reduce to circumstances where the wall-
crossing analysis of Section 6 may be carried out.

Case I: Pic(X2)
i2=−1 = 0

This case – with ℓ = 0 – was addressed above.
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Case II: Pic(X2)
i2=−1 = 1

Taking ℓ to be the generator, all the possible equivalences are realized
with Mukai vectors

v0 = (r, ℓ, s), gcd(r, s) = 1.

Indeed, this follows from Corollary 4.6: Writing ℓ2 = −2d and factoring
d =

∏m
j=1 p

ej
j into distinct primes, we see that the automorphism group

of d(Zℓ) is Cm
2 .

Thus it suffices to consider Mukai vectors with primitive first Chern
class, where wall crossing applies.

Case III: Pic(X2)
i2=−1 ≥ 2

(1) Suppose that v0 = (r, aℓ, s), with gcd(r, a) = 1. Then there
exists a anti-invariant divisor E on X2 such that D = rE + aℓ
is primitive. In particular, after tensoring by OX(E) the first
Chern class is primitive. However, tensoring by line bundles
has no impact on µ-stability.

(2) If only gcd(s, a) = 1, then after applying the twist τOX2
we have

gcd(r, a) = 1.
(3) Suppose that gcd(r, a) = α > 1 and write

v0 = (r, aℓ, s) = (αr′, αa′ℓ, s).

As before, choose an anti-invariant divisor E such that a′ℓ+r′E
is primitive. Tensoring by E gives

exp(E)v0 = (r, aℓ+ rE, s̃ := s+ aE · ℓ+ r
E · E
2

)

= (r, α(a′ℓ+ r′E), s̃).

Now

1 = gcd(r, a, s) = gcd(r, a, s̃) = gcd(α, s̃)

so we are reduced to the previous case.

To summarize, up to twists by OX2 that have no impact on our final
result, for each Mukai vector v inducing a derived equivalence we may
always achieve

Mµs
H (X2, v) =Mµss

H (X2, v)

for polarizations H avoiding walls. This completes Case III.
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We return to the situation where v0 = (r, aℓ, s) with ℓ anti-invariant,
applying the wall-crossing technique of Section 6. ConsiderMµs

H (X2, v0),
a K3 surface derived-equivalent to X2, where H is a polarization on X2

avoiding the walls. We produce an involution j on this moduli space
by composing isomorphisms

Mµs
H (X2, v0)→Mµs

H (X2,−v0)→Mµs
i∗2H

(X2, v0)→Mµs
H (X2, v0),

where the first isomorphism is induced by duality, the second is induced
by i2, and the third is βi∗2H,H introduced in (6.2). To see that this is an

involution, observe that βH,i∗2H
= β−1

i∗2H,H and use the fact that i2 and

duality are involutive and commute with each other.
We analyze how j acts on the cohomology

(7.6) H2(Mµs
H (X2, v0),Z) = (v∨0 )

⊥/Zv∨0 .

The isomorphism β allows us fix these identifications as H varies, even
as we cross walls. The action of i2 on the Mukai lattice and the asso-
ciated cohomology groups is given by functoriality; recall that i2 takes
v0 to its dual. For dualization

Mµs
H (X2, v0)→Mµs

H (X2,−v0)
the action is

(v∨0 )
⊥/Zv∨0 → (v0)

⊥/Zv0
γ 7→ −γ∨.

Indeed, the construction of (7.6) in [HL18, 8.1.1] and Serre duality
for K3 surfaces – modulo shift by two, the cohomology of the dual of a
sheaf is the dual of its cohomology – shows this is the induced mapping.
To conclude j∗ acts as follows:

• multiplication by +1 on

H2(X2,Z)i2=1 ⊂ H2((Mµs
H (X2, v0)),Z);

• multiplication by −1 on

(v∨0 )
⊥ ∩ H0(X2,Z)⊕ H4(X2,Z);

• multiplication by −1 on

(v∨0 )
⊥ ∩ H2(X2,Z)i2=−1.

We follow [Huy06, p. 235]. Looking at the composed cohomological
Fourier-Mukai transforms

H̃(X1,Z)
∼→ H̃(X2,Z)

∼→ H̃(Mµs
H (X2, v0),Z),
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which takes (0, 0, 1) to (0, 0, 1), the Torelli theorem guarantees that
X1 ≃Mµs

H (X2, v0). The function relation (7.4)for ϕ guarantees that i1
coincides with j under this isomorphism.

Our moduli space admits a universal sheaf [Huy06, Prop. 10.20]

E → X2 ×Mµs
H (X2, v0),

unique up to tensor product by line bundles on the moduli space. On
the other hand,

(i2, I)
∗E∨ → X2 ×Mµs

i∗2H
(X2, v0),

is also a universal sheaf, as is

(i2, j)
∗E∨ → X2 ×Mµs

H (X2, v0).

Applying the isomorphism with X1, we obtain

(i2, i1)
∗E∨ ≃ E ⊗ L1,

for some line bundle L1 on X1. This is equivalent to

(i2, i1)
∗E ≃ E∨ ⊗ L∨

1

and
E ≃ (i2, i1)

∗E∨ ⊗ i∗1L∨
1

whence L1 is necessarily symmetric under i1.
Rescaling E 7→ E ⊗N1, for N1 a line bundle on X1, takes

L1 7→ L1 ⊗N1 ⊗ i∗1N1.

A priori, the obstruction to obtaining the relation

(i2, i1)
∗E∨ ≃ E

is a cocycle in H2(⟨i1⟩ ,Pic(X1)). However, any such obstruction would
be visible on cohomology and thus is precluded by the relation (7.4).

□

Corollary 7.7. Under the assumptions above, the functors dual1 ◦i1
and dual2 ◦i2 are C2-equivariantly derived equivalent.

This motivates the formulation of Proposition 4.5.

Remark 7.8. As we recalled in Section 3, derived equivalences respect
orientations on the Mukai lattice [HMS09]. The orientation reversing
conjugation violates the orientation condition, in a prescribed way. Du-
ality is the archetypal orientation-reversing Hodge isogeny.

In Sections 8 and 11 we give examples of such equivalences.



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 25

8. Rational quotients and skew equivalence

Our first task is to give examples of skew equivalences using The-
orem 7.5. We remind the reader to consult Proposition 4.5 for the
relevant lattice machinery.

The simplest examples are in rank two. Take (X1, h1) and (X2, h2)
to be degree-two K3 surfaces, with associated involutions i1 and i2,
such that T (X1) ≃ T (X2). Suppose that

Pic(Xj)
ij = Zℓj, ℓ2j = −d;

note that Pic(Xj) is either ⟨hj, ℓj⟩ or
〈
hj,

hj+ℓj
2

〉
, i.e., the distinguished

2-elementary subgroup is trivial or cyclic. By Corollary 4.6, possible
examples correspond to isomorphisms

d(Zℓ1) ≃ d(Zℓ2)

preserving the distinguished subgroup – a vacuous condition as the
discriminant group is cyclic. Thus (X1, i1) and (X2, i2) are skew equiv-
alent.

Remark 8.1. In many examples, Mµs
hj
(Xj, v0) is automatically com-

pact for v0 = (r, ℓ, s), with r < |s| and gcd(r, s) = 1, because hj
happens not to lie on a wall.

The next group of examples arise from nontrivial stable isomor-
phisms. We exhibit lattice-polarized K3 surfaces with involution (X1, i1)
and (X2, i2), such that the anti-invariant Picard groups are stably
equivalent but inequivalent.
Specifically, we assume X1 and X2 are degree two K3 surfaces with

Pic(Xj) = Zhj ⊕ Aj(−1), h2j = 2,

where the involutions fix the hj and reverse signs on Aj’s. If A1 and
A2 are stably-equivalent, inequivalent positive definite lattices then
(X1, i1) and (X2, i2) are skew equivalent.

In contrast to ordinary equivalences (see 4.2) there are anti-symplectic
actions with nontrivial skew equivalences. The resulting quotients are
rational surfaces, indeed, P2.

Example 8.2 (Explicit matrices). The matrices, in the basis pj, qj, for
j = 1, 2, are given by

A1 :=

(
4 1
1 12

)
, A2 :=

(
6 1
1 8

)
.
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We extract a stable isomorphism

A1 ⊕ U ≃ A2 ⊕ U, U = ⟨u1, v1⟩ , with matrix

(
0 1
1 0

)
.

First, we give an isomorphism

A1 ⊕ ⟨e1⟩ ≃ A2 ⊕ ⟨e2⟩ , e21 = −2.
We put

p1 7→ p2 + e2,

and claim that the orthogonal complements to these are equivalent
indefinite lattices. Indeed,

p⊥1 = ⟨p1 − 4q1, e1⟩ =
(
188 0
0 −2

)
,

(p2 + e2)
⊥ = ⟨p2 − 6q2, 2q2 + e2⟩ =

(
282 −94
−94 30

)
= ⟨p2 + 3e2, 2q2 + e2⟩ =

(
−12 −4
−4 30

)
These are equivalent via Gaussian cycles of reduced forms

0 18 8 4
188 −2 26 −12 30

where the indicated basis elements are

p1 − 4q1, e1, p1 − 4q1 − 9e1, p1 − 4q1 − 10e1, 2(p1 − 4q1)− 19e1.

The composed isomorphism is

p1 − 4q1 − 10e1 7→ p2 + 3e2,

2(p1 − 4q1)− 19e1 7→ 2q2 + e2

p1 7→ p2 + e2

e1 7→ (2q2 + e2)− 2(p2 + 3e2) = 2(q2 − p2)− 5e2

q1 7→ 5(p2 − q2) + 12e2.

We extend the isomorphism above where ei = ui − vi
u1 + v1 7→ u2 + v2

u1 − v1 7→ 2(q2 − p2)− 5(u2 − v2)
p1 7→ p2 + (u2 − v2)
q1 7→ 5(p2 − q2) + 12(u2 − v2)
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whence we have

u1 7→ (q2 − p2)− 2u2 + 3v2

v1 7→ (p2 − q2) + 3u2 − 2v2.

9. Nikulin involutions

General properties. An involution ι on a K3 surface X over C pre-
serving the symplectic form is called a Nikulin involution. We recall
basic facts concerning such involutions, following [vGS07]:

• ι has 8 isolated fixed points;
• the (resolution of singularities) Y → X/ι is a K3 surface fitting
into a diagram

X
β← X̃

↓ ↓π
X/ι ← Y

where β blows up the fixed points and the vertical arrows have
degree two;
• the action of ι on H2(X,Z) is uniquely determined, and there
is a decomposition

H2(X,Z) = (U⊕3)1 ⊕ (E8(−1)⊕ E8(−1))P ,

where the first term is invariant and the second is a permutation
module for ι;
• the invariant and the anti-invariant parts of H2 take the form:

H2(X,Z)ι=1 ≃ U3 ⊕ E8(−2), H2(X,Z)ι=−1 = E8(−2)

Let E1, . . . , E8 denote the exceptional divisors of β and N1, . . . , N8 the
corresponding (−2)-curves on Y . The union ∪Ni is the branch locus
of π so there is a divisor

N̂ = (N1 + · · ·+N8)/2

saturating ⟨N1, . . . , N8⟩ ⊂ Pic(Y ); the minimal primitive sublattice
containing these divisors is called the Nikulin lattice, and is denoted
by N. We have [vGS07, Prop. 1.8]

π∗ : H
2(X̃,Z) → H2(Y,Z)

U3 ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−1⟩8 → U(2)3 ⊕ N⊕ E8(−1)
(u, x, y, z) 7→ (u, z, x+ y)
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and

π∗ : H2(Y,Z) → H2(X̃,Z)
U(2)3 ⊕ N⊕ E8(−1) → U3 ⊕ E8(−1)⊕ E8(−1)⊕ ⟨−1⟩8

(u, n, x) 7→ (2u, x, x, 2ñ)

where if n =
∑
niNi then ñ =

∑
niEi. Thus we obtain a distinguished

saturated sublattice

E8(−2) ⊂ Pic(X)

that coincides with the ι = −1 piece.

Proposition 9.1. Fix a lattice L containing E8(−2) as a primitive
sublattice; assume L arises as the Picard lattice of a projective K3 sur-
face. Then there exists a K3 surface X with Nikulin involution ι such
that

L = Pic(X) ⊃ Pic(X)ι=−1 = E8(−2).

Proof. Let A denote the orthogonal complement of E8(−2) in L. There
is a unique involution ι on L with

Lι=1 = A, Lι=−1 = E8(−2).
Now ι acts trivially on d(L) – keep in mind that d(E8(−2)) is a two-
elementary group – so we may naturally extend ι to the full K3 lattice.
(It acts trivially on L⊥.) These lattice-polarized K3 surfaces form our
family.
Nikulin [Nik79a, §4] explains how to get involutions for generic K3

surfaces with lattice polarization L. Choose a surface X such that
Pic(X) = L – a very general member of the family has this prop-
erty. Clearly X is projective – it admits divisors with positive self-
intersection. We claim there is an ample divisor H ∈ A. Indeed, the
ample cone of X is characterized as the chamber of the cone of positive
divisors by the group generated by reflections associated with indecom-
posable (−2)-classes E of positive degree [LP81]. Each (−2)-class E is
perpendicular to a unique ray in

A⊗ R ∩ { cone of positive divisors }
generated by an element aE ∈ A. Note that A cannot be contained
in E⊥ as E8(−2) has no (−2)-classes. We conclude that A meets each
chamber in the decomposition of the positive cone – it cannot be sep-
arated from the ample cone by any of the E⊥.

Once we have the ample cone, we can extract the automorphism
group of X via the Torelli Theorem: It consists of the Hodge isometries



INVOLUTIONS ON K3 SURFACES AND DERIVED EQUIVALENCE 29

taking the ample cone to itself. In particular, any Hodge isometry fixing
H is an automorphism. Thus ι is an automorphism of X. □

Proposition 9.2. Let L be an even hyperbolic lattice containing E8(−2)
as a saturated sublattice. Assume that d(L) has rank at most 11. Then
L is unique in its genus and the homomorphism

O(L)→ O(qL)

is surjective.

The condition on the rank of d(L) is satisfied for Picard lattices of
K3 surfaces X. We have

Pic(X) ⊂ U⊕3 ⊕ E8(−1)⊕2

which has rank 22; d(Pic(X)) ≃ d(T (X)) so both groups are generated
by ≤ 11 elements.

Proof. We apply Proposition 2.2. For odd primes p, the conditions are
easily checked as the rank r of L exceeds the rank of the p-primary
part d(L). If r ≥ 12 then the discriminant group is generated by ≤ 10
elements and we are done. Thus we focus on the p = 2 case with
r = 9, 10, or 11.

Let A denote the orthogonal complement to E8(−2) in L. The over-
lattice

L ⊃ A⊕ E8(−2)

corresponds to an isotropic subgroup

H ⊂ d(A)⊕ d(L)

with respect to qA ⊕ qL. Projection maps H injectively into each sum-
mand – we may interpret these projections as kernels of the natural
maps

d(A)→ d(L), d(E8(−2))→ d(L).

Thus H is a 2-elementary group, of rank at most three. It follows
that d(L) contains at least five copies of Z/2Z. Remark 2.3 shows this
validates the hypothesis of Proposition 2.2. □

The assumption on the rank of the discriminant groups can be re-
placed by bounds on its order [CS99, Cor. 22, p. 395] – at least for
purposes of showing there is one class in each genus.
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Rank nine examples. We focus on examples with Picard rank nine,
following [vGS07, Prop. 2.2] which lists the possible lattices. Suppose
that Pic(X)ι=1 = Zf with f 2 = 2d, which is necessarily ample as there
are no (−2)-classes in

Pic(X)ι=−1 = E8(−2).
We have the lattice

Λ := (2d)⊕ E8(−2),
for all d. For even d we have the index-two overlattice Λ̃ ⊃ Λ, generated
by

f + e

2
,

where f is a generator of (2d) and e ∈ E8(−2) is a primitive element
with

(e, e) =

{
−4 if d = 4m+ 2

−8 if d = 4m.

We are using the fact that the lattice E8 has primitive vectors of lengths
2 and 4. Using the shorthand

q(v) = qE8(−2)(v) (mod 2Z),
elements 0 ̸= v ∈ e8(−2) := d(E8(−2)) are of two types

• 120 elements v with q(v) = 1 (A1 + E7 type),
• 135 elements v with q(v) = 0 (D8 type).

Note that Λ̃ is the unique overlattice such that E8(−2) remains satu-
rated.

Proposition 9.3. Let (X1, f1) and (X2, f2) be polarized K3 surfaces
of degree 2d, derived equivalent via specialization of the construction in
Remark 3.1. If X1 admits a Nikulin involution fixing f1 then

• X2 admits a Nikulin involution fixing f2;
• there is an isomorphism

φ : X1
∼→ X2.

Proof. The derived equivalence induces an isomorphism of lattices with
Hodge structure

H2(X1,Z) ⊃ f⊥
1 ≃ f⊥

2 ⊂ H2(X2,Z),
which means that f⊥

2 ∩ Pic(X2) contains a sublattice isomorphic to
E8(−2). Thus there exists a Hodge involution

ι∗2 : H
2(X2,Z)→ H2(X2,Z)
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with anti-invariant summand equal to this copy of E8(−2). The Torelli
Theorem – see [vGS07, Prop. 2.3] – shows that X2 admits an involution
ι2 : X2 → X2.

Isomorphisms of K3 surfaces specialize in families [MM64, ch. I].
This reduces us to proving the result when the Xj have Picard rank
nine, putting us in the case of Proposition 9.2. The Counting Formula
of [HLOY04, §2] – using the conclusions of Proposition 9.2 – implies
that all Fourier-Mukai partners of X1 are isomorphic to X1. □

Remark 9.4. We are not asserting that φ∗f2 = f1! Suppose that X1

and X2 have Picard rank nine, the minimal possible rank. Then

φ∗f2 ≡ αf1 (mod E8(−2))

where α (mod 4d) is the corresponding solution to congruence (3.1).

Thus we obtain nontrivial derived equivalence among Nikulin sur-
faces even in rank nine!

Rank ten examples. Turning to rank ten, we offer a generalization
of [vGS07, Prop. 2.3]:

Proposition 9.5. Fix a rank two indefinite even lattice A and an even
extension

L ⊃ A⊕ E8(−2)
invariant under ι; here ι fixes A and acts by multiplication by −1 on
E8(−2). Then there exists a K3 surface X with Nikulin involution ι
such that

A = Pic(X)ι=1 ⊂ Pic(X) = L ⊃ Pic(X)ι=−1 = E8(−2).

Proof. The lattice L embeds uniquely into the K3 lattice by Propo-
sition 2.4. Proposition 9.1 gives the desired K3 surface with involu-
tion. □

We observed in Proposition 9.2 that the lattices L are unique in
their genus and admit automorphisms realizing the full group O(d(L)).
Repeating the reasoning for Proposition 9.3 we find:

Proposition 9.6. A K3 surface X with involution ι1, produced fol-
lowing Proposition 9.5 applied to A1, will have a second involution ι2
associated with A2. Moreover (X, ι1) and (X, ι2) are not equivariantly
derived equivalent.



32 BRENDAN HASSETT AND YURI TSCHINKEL

We elaborate on the overlattices L arising in the assumptions of
Proposition 9.5. What lattices may arise from a given A? Each L
arises from a 2-elementary

H ⊂ d(A)⊕ e8(−2)

isotropic with respect to qA ⊕ qE8(−2).
We consider the orbits of

H ≃ (Z/2Z)2 ⊂ e8(−2)

under automorphisms of the lattice. These reflect possible quadratic
forms on (Z/2Z)2. We enumerate the possibilities, relying on descrip-
tion of maximal subgroups of the simple group of O+

8 (2) (automor-
phisms of e8(−2)) [CCN+85, p. 85] and subgroups of W (E8) (a closely
related group) associated with reflections [DPR13, Table 5]. For the
reader’s reference, we list the root systems associated with the sub-
groups in parentheses:

(1) isotropic subspaces, where q|H is trivial – 1575 elements (D4+D4

type);
(2) rank one subspaces, where q|H has a kernel, e.g., q(x, y) = x2 –

3780 = 28× 135 elements (A1 +A1 +D6 type);
(3) “minus lines” full rank non-split subspaces, e.g., q(x, y) = x2 +

xy + y2 – 1120 = 28 · 120/3 elements (A2 + E6 type);
(4) full rank split subspaces, e.g., q(x, y) = xy – 4320 elements.

As a check, the Grassmannian Gr(2, 8) has Betti numbers

1 1 2 2 3 3 4 3 3 2 2 1 1

and thus, by the Weil conjectures, 10795 points of F2. Note that

10795 = 1575 + 3780 + 1120 + 4320.

What about arbitrary rank? Let A1 and A2 be indefinite lattices
of rank r ≥ 2 in the same genus. Consider overlattices

L1 ⊃ A1 ⊕ E8(−2), L2 ⊃ A1 ⊕ E8(−2)

associated with subspaces H ⊂ e8(−2) in the same orbit, so we have
d(L1) ≃ d(L2). It follows that L1 ≃ L2 provided the d(Li) have rank
at most 11 (see Proposition 9.2); this holds for Picard lattices of K3
surfaces. Assuming L1 and L2 arise as Picard lattices of K3 surfaces,
we obtain results as in Propositions 9.3 and 9.6.

We conclude with one last observation:
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Proposition 9.7. The existence of a Nikulin structure for one mem-
ber of a derived equivalence class induces Nikulin structures on all K3
surfaces in the equivalence class.

Suppose X1 and X2 are derived equivalent and X1 admits a Nikulin
involution. Proposition 9.2 implies

Pic(X1) ≃ Pic(X2)

and we obtain a copy of E8(−2) ⊂ Pic(X2). Proposition 9.1 guarantees
X2 admits a Nikulin involution as well.

10. Geometric application

In this section, we present a geometric application of the study of
Nikulin involutions, up to derived equivalence.

Let (X1, f1) and (X2, f2) denote derived equivalent K3 surfaces of
degree 12, admitting Nikulin involutions ιj : Xj → Xj with ι∗jfj = fj
for j = 1, 2. We assume Picard groups

Pic(Xj) = Zfj ⊕ E8(−2).

Note that the derived equivalence induces natural identifications be-
tween the E8(−2) summands of Pic(X1) and Pic(X2). In particular,
we obtain bijections between the fixed-point loci

X ι1
1 = X ι2

2 .

Let Zj ⊂ Xj denote triples of fixed points compatible with these bijec-
tions. Assuming the Xj are generic, i.e. defined by quadratic equations
in P7, the fixed points are not collinear.
Projection from the Zj gives surfaces

BlZj
(Xj)→ Yj ⊂ P4

where the blowup normalizes the image of the projection. These con-
structions are compatible with the involutions on each side.

We claim that the construction of [HL18] gives a Cremona transform

ϕ : P4 ∼
99K P4

such that

• the indeterminacy of ϕ is Y1;
• the indeterminacy of ϕ−1 is Y2;
• ϕ is compatible with the involutions ι1 and ι2 induced in the
P4’s.
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Indeed, the construction induces an isogeny of H2(X1,Z) and H2(X2,Z)
induced by ϕ, restricting to an isomorphism of the primitive cohomol-
ogy

f⊥
1

∼→ f⊥
2 .

The construction entails designating projection loci Z ′
j ∈ X

[3]
j compat-

ible with the associated

X
[3]
1

∼
99K X [3]

2 ,

our stipulation that the Zj consist of suitable fixed points gives com-
patible projection loci.

Suppose that ϕ : Pn ∼
99K Pn is birational and equivariant for the

action of a finite group G. In this case, [KT22, Thm. 1] introduces a
well-defined invariant
(10.1)

CG(ϕ) :=
∑

E∈ExG(ϕ−1)
gen.stab(E)={1}

[E ý G]−
∑

D∈ExG(ϕ)
gen.stab(D)={1}

[D ý G] ∈ Z[BirG,n−1],

taking values in the free abelian group on G-birational isomorphism
classes of algebraic varieties of dimension n − 1. In this case, the
terms are the projectivized normal bundles of Y1 and Y2, taken with
opposite signs. It is worth mentioning that the underlying K3 surfaces
X1 andX2 are isomorphic by Proposition 9.3, and the group actions are
conjugate under derived equivalences but not under automorphisms.
The difference of classes of exceptional loci in (10.1) is nonzero due to
Proposition 10.1 below. This gives an instance where the refinement
of the invariant c(ϕ) in [LSZ23], [LS24] using group actions yields new
information.

Proposition 10.1 (cf. Thm. 2, [LS10]). Let X1 and X2 be smooth
projective G-varieties that are not uniruled. Then any G-equivariant
stable birational equivalence

X1 × Pr ∼
99K X2 × Ps,

with trivial G-action on the second factors, arises from a G-equivariant
birational equivalence

X1
∼
99K X2.

Proof. Our assumption – that X1 and X2 are not uniruled – means
that

X1 × Pr → X1, X2 × Ps → X2
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are maximal rationally-connected (MRC) fibrations. Since X1×Pr ∼
99K

X2 × Ps, the functoriality of MRC fibrations [Kol96, IV.5.5] gives a
natural birational map

X1
∼
99K X2.

When the varieties admit G-actions, the induced birational map is
compatible with these actions. □

11. Enriques involutions

Let S be an Enriques surface over C. Its universal cover is a K3
surface X with covering involution ϵ : X → X, a fixed-point-free auto-
morphism of order two, called an Enriques involution.

The classification of Enriques surfaces S up to derived equivalence
boils down to the classification of pairs (X, ϵ) up to C2-equivariant
derived equivalence [BM01, §6] (and [BM17] more generally). Derived
equivalent Enriques surfaces are isomorphic [BM01, Prop. 6.1].

A number of authors have classified Enriques involutions on a given
K3 surface X, modulo its automorphisms Aut(X):

• Dolgachev [Dol84] gave the first examples with finite Aut(S);
Kondo [Kon92] offered examples of other types. See the Bib-
liographic Notes of [DKo23, Ch. 8] for more history, including
early contributions by Fano.
• Ohashi showed that there finitely many Aut(X)-orbits of such
involutions. In the Kummer case, the possible quotients are
classified by nontrivial elements of the discriminant group of
the Néron-Severi group NS(X). There are 15 on general Kum-
mer surfaces of product type, 31 in a general Jacobian Kum-
mer surface, but the number is generally unbounded [Oha07],
[Oha09].
• Shimada and Veniani consider singular (i.e. rank 20) K3 sur-
faces; one of their results is a parametrization of Aut(X)-orbits
on the set of Enriques involutions; the number of such orbits
depends only on the genus of the transcendental lattice T (X)
[SV20, Thm. 3.19].

These results are based on lattice theory: two Enriques involutions
on a K3 surface X are conjugate via Aut(X) if an only if the corre-
sponding Enriques quotients are isomorphic [Oha07, Prop. 2.1].

Let

M := U⊕ E8(−1)
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be the unique even unimodular hyperbolic lattice of rank 10; we have

Pic(S)/torsion ≃ M

and

Pic(X) ⊇ M(2)

as a primitive sublattice. This coincides with the invariant sublattice

Pic(X)ϵ=1 ⊂ Pic(X)

under the involution ϵ. Let N denote the orthogonal complement to M
in H2(X,Z), which coincides with H2(X,Z)ϵ=−1; note that T (X) ⊂ N.
We have

N ≃ U⊕ U(2)⊕ E8(−2)
which has signature (2, 10). Thus

Pic(X)ϵ=−1 = T (X)⊥ ⊂ N

has negative definite intersection form. The following result gives a
criterion for the existence of Enriques involutions [Keu16, Thm. 1],
[Oha07, Thm. 2.2], [SV20, Thm. 3.1.1]:

Proposition 11.1. Let X be a K3 surface. Enriques involutions on
X correspond to the following data: Primitive embeddings

T (X) ⊂ N ⊂ H2(X,Z)

such that the orthogonal complement to T (X) in N does not contain
(−2)-classes.

In particular, let X be a K3 surface with an Enriques involution.
Then:

• rkPic(X) ≥ 10,
• if rk Pic(X) = 10 then there is a unique such involution,
• if rk Pic(X) = 11 then Pic(X) is isomorphic to [Oha07, Prop.
3.5]

– U(2)⊕ E8 ⊕ ⟨−2n⟩, n ≥ 2, or
– U⊕ E8(2)⊕ ⟨−4n⟩, n ≥ 1.

Proposition 11.2. Let X and Y be derived equivalent K3 surfaces.
Assume that X admits an Enriques involution. Then X is isomorphic
to Y . In particular, the existence of an Enriques involution is a derived
invariant.
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Proof. In Picard rank ≥ 12, derived equivalence implies isomorphism.
IfX and Y and derived equivalent of rank 10 andX admits an Enriques
involution, then T (X) ≃ T (Y ) and Pic(X) and Pic(Y ) are stably iso-
morphic. In Picard ranks 10 and 11, it suffices to show that the lattice
M(2) is unique in its genus and all automorphisms of the discriminant
group (d(M(2)), qM(2))) lift to automorphisms of M(2). This is im-
plied by [Nik79b, Thm. 1.14.2]. Indeed, [SV20, Lem. 3.1.7] shows that
Pic(X) satisfies these two conditions whenever X admits an Enriques
involution. □

Corollary 4.2 implies (cf. [BM01, §6]):

Proposition 11.3. Any C2-equivariant derived autoequivalence

(X, ϵ1) ∼ (X, ϵ2)

arises from an automorphism of X.

We observe a corollary of Proposition 2.2: Let (X1, ϵ1) and (X2, ϵ2)
denote K3 surfaces with Enriques involutions. They are orientation
reversing (i.e. skew) conjugate if

• τ : T (X1)
∼→ T (X2) as lattices, with compatible Hodge struc-

tures;
• Pic(X1)

ϵ1=−1 and Pic(X2)
ϵ2=−1 have the same discriminant qua-

dratic form.

We explore this in more detail in the case of singular (rank 20) K3
surfaces. The existence of involutions on singular K3 surfaces is gov-
erned by:

Proposition 11.4. [Ser05] Let X be a singular K3 surface with tran-
scendental lattice T (X) of discriminant d. There is no Enriques invo-
lution on X if and only if d ≡ 3 (mod 8) or

T (X) =

(
2 0
0 2

)
,

(
2 0
0 4

)
, or

(
2 0
0 8

)
.

The “most algebraic example”, i.e. the smallest discriminant admit-
ting an Enriques involution, has

T (X) ≃
(
2 1
1 4

)
.

In this situation there are two possibilities. We write the maximal
sublattices

N ⊂ Pic(X)
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such that the involution ϵ acts via −1.
We follow the notation [SV20, Table 3.1]. We consider lattices

N144
10,7(2), N242

10,7(2)

where

N242
10,7(−1) ≃

(
2 1
1 4

)
⊕ E8

with E8 positive definite and

N144
10,7(2)(−1) ≃



2 1 1 0 1 0 0 0 0 0
1 2 0 0 0 0 0 0 0 0
1 0 2 1 0 0 0 0 0 0
0 0 1 4 0 0 0 0 0 0
1 0 0 0 2 1 0 0 0 0
0 0 0 0 1 2 1 0 0 0
0 0 0 0 0 1 2 1 0 0
0 0 0 0 0 0 1 2 1 0
0 0 0 0 0 0 0 1 2 1
0 0 0 0 0 0 0 0 1 2


.

According to magma, these two lattices are inequivalent but are in the
same spinor genus thus are stably equivalent.

These involutions are not derived equivalent. Indeed, passing to
Mukai lattices adds a hyperbolic summand U on which the involution
acts trivially. However, in the case at hand we are stabilizing the (−1)-
eigenspace. Thus these involutions are “skew equivalent” in the sense
of Section 7.

12. Postscript on involutions in higher dimensions

There are many papers addressing the structure of involutions of
higher-dimensional irreducible holomorphic symplectic varieties.

• Symplectic involutions of varieties of K3[n]-type and their fixed
loci are classified in [KMO22].
• For varieties of Kummer type – arising from an abelian surface
A – involutions associated with ±1 on A are analyzed in [HT13,
Th. 4.4] and [KMO22, Th. 1.3].
• Anti-symplectic involutions on varieties of K3[n]-type of degree
two are studied in [FMOS22].
• Higher-dimensional analogs of Enriques involutions are studied
in [OS11].
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• Involutions on cubic fourfolds – both symplectic (see [LZ22]
and [HT10]) and anti-symplectic – are studied in [Mar23]. The
corresponding actions on lattices are described explicitly.
• Involutions on O’Grady type examples are considered in [MM22].

It is natural to consider whether derived equivalences of involutions
on K3 surfaces X1 and X2 may be understood via equivalences of
the induced involutions on punctual Hilbert schemes and other moduli
spaces.
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