\def\cprime{$'$} \providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{BCHM06} \bibitem[Abh56]{Abh} S.~Abhyankar, \emph{Local uniformization on algebraic surfaces over ground fields of characteristic {$p\ne 0$}}, Ann. of Math. (2) \textbf{63} (1956), 491--526. \MR{0078017 (17,1134d)} \bibitem[AGZV85]{Ar} V.~I. Arnol{\cprime}d, S.~M. Guse{\u\i}n-Zade, and A.~N. Varchenko, \emph{Singularities of differentiable maps. {V}ol. {I}}, Monographs in Mathematics, vol.~82, Birkh\"auser Boston Inc., Boston, MA, 1985, The classification of critical points, caustics and wave fronts, Translated from the Russian by I. Porteous and M. Reynolds. \MR{777682 (86f:58018)} \bibitem[Art62]{Artin} M.~Artin, \emph{Some numerical criteria for contractability of curves on algebraic surfaces}, Amer. J. Math. \textbf{84} (1962), 485--496. \MR{0146182 (26 \#3704)} \bibitem[BCHM06]{BCHM} C.~Birkar, P.~Cascini, C.~D. Hacon, and J.~M\textsuperscript{c}Kernan, \emph{Existence of minimal models for varieties of log general type}, 2006, arXiv:math/0610203. \bibitem[Bea96]{Beauville} A.~Beauville, \emph{Complex algebraic surfaces}, second ed., London Mathematical Society Student Texts, vol.~34, Cambridge University Press, Cambridge, 1996, Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. \MR{1406314 (97e:14045)} \bibitem[BP04]{BaPo} V.~V. Batyrev and O.~N. Popov, \emph{The {C}ox ring of a del {P}ezzo surface}, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkh\"auser Boston, Boston, MA, 2004, pp.~85--103. \MR{2029863 (2005h:14091)} \bibitem[Bri71]{Bri} E.~Brieskorn, \emph{Singular elements of semi-simple algebraic groups}, Actes du Congr\`es International des Math\'ematiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 1971, pp.~279--284. \MR{0437798 (55 \#10720)} \bibitem[Bro06]{Brow} T.~D. Browning, \emph{The density of rational points on a certain singular cubic surface}, J. Number Theory \textbf{119} (2006), no.~2, 242--283. \MR{2250046 (2007d:14046)} \bibitem[Cay69]{Cay} A.~Cayley, \emph{A memoir on cubic surfaces}, Philosophical Transactions of the Royal Society of London \textbf{159} (1869), 231--326. \bibitem[CKM88]{CKM} H.~Clemens, J.~Koll{\'a}r, and S.~Mori, \emph{Higher-dimensional complex geometry}, Ast\'erisque (1988), no.~166, 144 pp. (1989). \MR{1004926 (90j:14046)} \bibitem[CL97]{PORTA} T.~Christof and A.~L\"obel, \emph{Polyhedron representation transformation algorithm ({PORTA})}, 1997, software available at \texttt{http://www.iwr.uni-heidelberg.de/groups/ comopt/software/PORTA}. \bibitem[Cox95]{Cox} D.~A. Cox, \emph{The homogeneous coordinate ring of a toric variety}, J. Algebraic Geom. \textbf{4} (1995), no.~1, 17--50. \MR{1299003 (95i:14046)} \bibitem[CT87]{CT86} J.-L. Colliot-Th{\'e}l{\`e}ne, \emph{Arithm\'etique des vari\'et\'es rationnelles et probl\`emes birationnels}, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Berkeley, Calif., 1986) (Providence, RI), Amer. Math. Soc., 1987, pp.~641--653. \MR{934267 (89d:11051)} \bibitem[CTS87]{CTS} J.-L. Colliot-Th{\'e}l{\`e}ne and J.-J. Sansuc, \emph{La descente sur les vari\'et\'es rationnelles. {II}}, Duke Math. J. \textbf{54} (1987), no.~2, 375--492. \MR{899402 (89f:11082)} \bibitem[Der06a]{De2} U.~Derenthal, \emph{On the {C}ox ring of {D}el {P}ezzo surfaces}, 2006, arXiv:math/0603111v1. \bibitem[Der06b]{De3} \bysame, \emph{Singular {D}el {P}ezzo surfaces whose universal torsors are hypersurfaces}, 2006, arXiv:math.AG/0604194. \bibitem[Der07]{De} \bysame, \emph{Universal torsors of del {P}ezzo surfaces and homogeneous spaces}, Adv. Math. \textbf{213} (2007), no.~2, 849--864. \MR{2332612 (2008i:14052)} \bibitem[dlB98]{dlB} R.~de~la Bret{\`e}che, \emph{Sur le nombre de points de hauteur born\'ee d'une certaine surface cubique singuli\`ere}, Ast\'erisque (1998), no.~251, 51--77, Nombre et r\'epartition de points de hauteur born\'ee (Paris, 1996). \MR{1679839 (2000b:11074)} \bibitem[dlBBD07]{dlBBD} R.~de~la Bret{\`e}che, T.~D. Browning, and U.~Derenthal, \emph{On {M}anin's conjecture for a certain singular cubic surface}, Ann. Sci. \'Ecole Norm. Sup. (4) \textbf{40} (2007), no.~1, 1--50. \MR{2332351 (2008e:11038)} \bibitem[Dur79]{Dur} A.~H. Durfee, \emph{Fifteen characterizations of rational double points and simple critical points}, Enseign. Math. (2) \textbf{25} (1979), no.~1-2, 131--163. \MR{543555 (80m:14003)} \bibitem[DV34]{DV} P.~Du~Val, \emph{{On isolated singularities of surfaces which do not affect the conditions of adjunction. I.}}, Proc. Camb. Philos. Soc. \textbf{30} (1934), 453--459 (English). \bibitem[EKW04]{EKW} E.~J. Elizondo, K.~Kurano, and K.~Watanabe, \emph{The total coordinate ring of a normal projective variety}, J. Algebra \textbf{276} (2004), no.~2, 625--637. \MR{2058459 (2005b:14013)} \bibitem[FH91]{FH} W.~Fulton and J.~Harris, \emph{Representation theory}, Graduate Texts in Mathematics, vol. 129, Springer-Verlag, New York, 1991, A first course, Readings in Mathematics. \MR{1153249 (93a:20069)} \bibitem[Fou98]{Fou} {\'E}.~Fouvry, \emph{Sur la hauteur des points d'une certaine surface cubique singuli\`ere}, Ast\'erisque (1998), no.~251, 31--49, Nombre et r\'epartition de points de hauteur born\'ee (Paris, 1996). \MR{1679838 (2000b:11075)} \bibitem[GHS03]{GHS} T.~Graber, J.~Harris, and J.~Starr, \emph{Families of rationally connected varieties}, J. Amer. Math. Soc. \textbf{16} (2003), no.~1, 57--67 (electronic). \MR{1937199 (2003m:14081)} \bibitem[GJ00]{Polymake} E.~Gawrilow and M.~Joswig, \emph{polymake: a framework for analyzing convex polytopes}, Polytopes---combinatorics and computation ({O}berwolfach, 1997) (G.~Kalai and G.M. Ziegler, eds.), DMV Sem., vol.~29, Birkh\"auser, Basel, 2000, software available at \texttt{ http://www.math.tu-berlin.de/polymake/}, pp.~43--73. \MR{1785292 (2001f:52033)} \bibitem[Har77]{Hart} R.~Hartshorne, \emph{Algebraic geometry}, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. \MR{0463157 (57 \#3116)} \bibitem[Has04]{Has} B.~Hassett, \emph{Equations of universal torsors and {C}ox rings}, Mathematisches Institut, Georg-August-Universit\"at G\"ottingen: Seminars Summer Term 2004, Universit\"atsdrucke G\"ottingen, G\"ottingen, 2004, pp.~135--143. \MR{2183138 (2007a:14046)} \bibitem[HB03]{HB} D.~R. Heath-Brown, \emph{The density of rational points on {C}ayley's cubic surface}, Proceedings of the Session in Analytic Number Theory and Diophantine Equations (Bonn), Bonner Math. Schriften, vol. 360, Univ. Bonn, 2003, p.~33. \MR{2075628 (2005d:14033)} \bibitem[HBM99]{HBM} D.~R. Heath-Brown and B.~Z. Moroz, \emph{The density of rational points on the cubic surface {$X\sb 0\sp 3=X\sb 1X\sb 2X\sb 3$}}, Math. Proc. Cambridge Philos. Soc. \textbf{125} (1999), no.~3, 385--395. \MR{1656797 (2000f:11080)} \bibitem[HK00]{KeHu} Y.~Hu and S.~Keel, \emph{Mori dream spaces and {GIT}}, Michigan Math. J. \textbf{48} (2000), 331--348, Dedicated to William Fulton on the occasion of his 60th birthday. \MR{1786494 (2001i:14059)} \bibitem[HT04]{HaTs} B.~Hassett and Y.~Tschinkel, \emph{Universal torsors and {C}ox rings}, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkh\"auser Boston, Boston, MA, 2004, pp.~149--173. \MR{2029868 (2005a:14049)} \bibitem[Isk79]{Isk} V.~A. Iskovskih, \emph{Minimal models of rational surfaces over arbitrary fields}, Izv. Akad. Nauk SSSR Ser. Mat. \textbf{43} (1979), no.~1, 19--43, 237, English translation: Math. USSR-Izv. 14 (1980), no. 1, 17--39. \MR{525940 (80m:14021)} \bibitem[KM98]{KM} J.~Koll{\'a}r and S.~Mori, \emph{Birational geometry of algebraic varieties}, Cambridge Tracts in Mathematics, vol. 134, Cambridge University Press, Cambridge, 1998, With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. \MR{1658959 (2000b:14018)} \bibitem[Kol96]{Kol} J.~Koll{\'a}r, \emph{Rational curves on algebraic varieties}, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol.~32, Springer-Verlag, Berlin, 1996. \MR{1440180 (98c:14001)} \bibitem[Lan59]{lang} S.~Lang, \emph{Abelian varieties}, Interscience Tracts in Pure and Applied Mathematics. No. 7, Interscience Publishers, Inc., New York, 1959. \MR{0106225 (21 \#4959)} \bibitem[Laz04]{Laz} R.~Lazarsfeld, \emph{Positivity in algebraic geometry. {I}}, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics, vol.~48, Springer-Verlag, Berlin, 2004, Classical setting: line bundles and linear series. \MR{2095471 (2005k:14001a)} \bibitem[LV07]{LV} A.~Laface and M.~Velasco, \emph{{P}icard-graded {B}etti numbers and the defining ideals of {C}ox rings}, 2007, arXiv:0707.3251. \bibitem[Man66]{Manin2} Yu.~I. Manin, \emph{Rational surfaces over perfect fields}, Inst. Hautes \'Etudes Sci. Publ. Math. (1966), no.~30, 55--113, English translation: American {M}athematical {S}ociety {T}ranslations. {S}eries 2, {V}ol. 84 (1969): {T}welve papers on algebra, algebraic geometry and topology. \MR{0225780 (37 \#1373)} \bibitem[Man74]{Manin} \bysame, \emph{Cubic forms: algebra, geometry, arithmetic}, North-Holland Publishing Co., Amsterdam, 1974, Translated from Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4. \MR{0460349 (57 \#343)} \bibitem[Mat02]{Mat} K.~Matsuki, \emph{Introduction to the {M}ori program}, Universitext, Springer-Verlag, New York, 2002. \MR{1875410 (2002m:14011)} \bibitem[Mil80]{Mil} J.~S. Milne, \emph{\'{E}tale cohomology}, Princeton Mathematical Series, vol.~33, Princeton University Press, Princeton, N.J., 1980. \MR{559531 (81j:14002)} \bibitem[MT86]{MT} Yu.~I. Manin and M.~A. Tsfasman, \emph{Rational varieties: algebra, geometry, arithmetic}, Uspekhi Mat. Nauk \textbf{41} (1986), no.~2(248), 43--94, English translation: Russian Math. Surveys 41 (1986), no. 2, 51--116. \MR{842161 (87k:11065)} \bibitem[Mum95]{MumCAG} D.~Mumford, \emph{Algebraic geometry. {I}}, Classics in Mathematics, Springer-Verlag, Berlin, 1995, Complex projective varieties, Reprint of the 1976 edition. \MR{1344216 (96d:14001)} \bibitem[Pop01]{Po} O.~N. Popov, \emph{{D}el {P}ezzo surfaces and algebraic groups}, 2001, Diplomarbeit, Universit\"at T\"ubingen. \bibitem[Rei97]{Reid} M.~Reid, \emph{Chapters on algebraic surfaces}, Complex algebraic geometry (Park City, UT, 1993), IAS/Park City Math. Ser., vol.~3, Amer. Math. Soc., Providence, RI, 1997, pp.~3--159. \MR{1442522 (98d:14049)} \bibitem[Sal98]{Sal} P.~Salberger, \emph{Tamagawa measures on universal torsors and points of bounded height on {F}ano varieties}, Ast\'erisque (1998), no.~251, 91--258, Nombre et r\'epartition de points de hauteur born\'ee (Paris, 1996). \MR{1679841 (2000d:11091)} \bibitem[SB01]{SB} N.~I. Shepherd-Barron, \emph{On simple groups and simple singularities}, Israel J. Math. \textbf{123} (2001), 179--188. \MR{1835294 (2002c:14076)} \bibitem[SD72]{SwD} H.~P.~F. Swinnerton-Dyer, \emph{Rational points on del {P}ezzo surfaces of degree {$5$}}, Algebraic geometry, Oslo 1970 (Proc. Fifth Nordic Summer School in Math.), Wolters-Noordhoff, Groningen, 1972, pp.~287--290. \MR{0376684 (51 \#12859)} \bibitem[Sho96]{Sh} V.~V. Shokurov, \emph{{$3$}-fold log models}, J. Math. Sci. \textbf{81} (1996), no.~3, 2667--2699, Algebraic geometry, 4. \MR{1420223 (97i:14015)} \bibitem[Sko93]{Sk} A.~N. Skorobogatov, \emph{On a theorem of {E}nriques-{S}winnerton-{D}yer}, Ann. Fac. Sci. Toulouse Math. (6) \textbf{2} (1993), no.~3, 429--440. \MR{1260765 (95b:14018)} \bibitem[Sko01]{Skbook} \bysame, \emph{Torsors and rational points}, Cambridge Tracts in Mathematics, vol. 144, Cambridge University Press, Cambridge, 2001. \MR{1845760 (2002d:14032)} \bibitem[SS07]{SeSk} V.~V. Serganova and A.~N. Skorobogatov, \emph{Del {P}ezzo surfaces and representation theory}, Algebra Number Theory \textbf{1} (2007), no.~4, 393--419. \MR{2368955} \bibitem[STV07]{STV} M.~Stillman, D.~Testa, and M.~Velasco, \emph{{G}r\"obner bases, monomial group actions, and the {C}ox rings of del {P}ezzo surfaces}, J. Algebra \textbf{316} (2007), no.~2, 777--801. \MR{2358614 (2008i:14054)} \bibitem[SX08]{SX} B.~Sturmfels and Z.~Xu, \emph{Sagbi bases of {C}ox-{N}agata rings}, 2008, arXiv:0803.0892. \bibitem[TVAV08]{TVAV} D.~Testa, A.~V\'arilly-Alvarado, and M.~Velasco, \emph{Cox rings of degree one del {P}ezzo surfaces}, 2008, arXiv:0803.0353. \bibitem[Zar58a]{Zar1} O.~Zariski, \emph{On {C}astelnuovo's criterion of rationality {$p\sb{a}=P\sb{2}=0$} of an algebraic surface}, Illinois J. Math. \textbf{2} (1958), 303--315. \MR{0099990 (20 \#6426)} \bibitem[Zar58b]{Zar2} \bysame, \emph{The problem of minimal models in the theory of algebraic surfaces}, Amer. J. Math. \textbf{80} (1958), 146--184. \MR{0097404 (20 \#3873)} \bibitem[Zar62]{Zar3} \bysame, \emph{The theorem of {R}iemann-{R}och for high multiples of an effective divisor on an algebraic surface}, Ann. of Math. (2) \textbf{76} (1962), 560--615. \MR{0141668 (25 \#5065)} \end{thebibliography}