\BOOKMARK [1][-]{section.1}{1. Introduction}{}% 1 \BOOKMARK [1][-]{section.2}{2. Review of the complex case}{}% 2 \BOOKMARK [2][-]{subsection.2.1}{2.1. Cycle class maps}{section.2}% 3 \BOOKMARK [2][-]{subsection.2.2}{2.2. Algebraicity and cycle maps}{section.2}% 4 \BOOKMARK [2][-]{subsection.2.3}{2.3. Vanishing results}{section.2}% 5 \BOOKMARK [2][-]{subsection.2.4}{2.4. Chow varieties}{section.2}% 6 \BOOKMARK [1][-]{section.3}{3. Albanese varieties}{}% 7 \BOOKMARK [1][-]{section.4}{4. Passage to nonclosed fields}{}% 8 \BOOKMARK [2][-]{subsection.4.1}{4.1. -adic cycle maps}{section.4}% 9 \BOOKMARK [2][-]{subsection.4.2}{4.2. Descent of intermediate Jacobians}{section.4}% 10 \BOOKMARK [2][-]{subsection.4.3}{4.3. Application of the Albanese to cycle maps}{section.4}% 11 \BOOKMARK [2][-]{subsection.4.4}{4.4. Compatibility under addition}{section.4}% 12 \BOOKMARK [1][-]{section.5}{5. Construction of invariants}{}% 13 \BOOKMARK [2][-]{subsection.5.1}{5.1. Galois actions on cycle groups}{section.5}% 14 \BOOKMARK [2][-]{subsection.5.2}{5.2. The key homomorphism}{section.5}% 15 \BOOKMARK [2][-]{subsection.5.3}{5.3. Sample cases}{section.5}% 16 \BOOKMARK [1][-]{section.6}{6. Threefolds}{}% 17 \BOOKMARK [2][-]{subsection.6.1}{6.1. A preliminary result}{section.6}% 18 \BOOKMARK [2][-]{subsection.6.2}{6.2. Rationality criterion}{section.6}% 19 \BOOKMARK [2][-]{subsection.6.3}{6.3. Complete intersections of two quadrics}{section.6}% 20 \BOOKMARK [1][-]{section*.1}{References}{}% 21