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Abstract. We introduce new obstructions to rationality for geo-
metrically rational threefolds arising from the geometry of curves
and their cycle maps.

1. Introduction

Let X be a smooth projective variety over a field k ⊂ C with XC
rational. When is X rational over k?

It is necessary that X(k) 6= ∅. This is also sufficient if X has di-
mension 1. In dimension 2, this is not sufficient, but there are effective
criteria for rationality, due to Enriques, Iskovskikh, Manin, and others.
For example, minimal del Pezzo surfaces of degree ≤ 4 are never ra-
tional. Indeed, the Galois action on the Néron-Severi group – the lines
especially – governs the rationality of X.

The case of threefolds remains open. The Galois action on the Néron-
Severi group can still be used to obtain nonrationality in some cases,
but never when that group has rank one or is split over the ground field.
The case of complete intersections of two quadrics was considered in
depth in [HT19]; we gave a complete characterization of rationality over
k = R. Benoist and Wittenberg [BW19a] developed an approach in-
spired by the Clemens-Griffiths method of intermediate Jacobians. If a
threefold X is rational then its cohomology reflects invariants of curves
blown up in parametrizations P3 99K X. Over C, the intermediate Ja-
cobian of X must be isomorphic to a product of Jacobians of curves.
When k is not algebraically closed, one may endow the intermediate
Jacobian with the structure of a principally polarized abelian variety
over k [ACMV18]. This must be isomorphic to a product of Jacobians
of (not necessarily geometrically connected) curves over k, if X is to be
rational over k. Benoist and Wittenberg exhibit geometrically rational
conic bundles over P2 where the latter condition fails to hold, e.g., over
k = R.
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Now suppose that X is a smooth projective geometrically rational
threefold as above, with rank-one Néron-Severi group and intermediate
Jacobian J2(X) isomorphic to a product of Jacobians of curves over k.
We introduce new obstructions to rationality of such X over k based on
the geometry of curves on X and provide examples where they apply.

The idea is that the cycle class map on curves of given degree d
naturally takes its values in a principal homogeneous space for J2(X).
Moreover, if J2(X) ' J1(C) for a smooth geometrically irreducible
curve C of genus g ≥ 2 over k, then this homogeneous space is isomor-
phic to a component of the Picard scheme of C provided X is rational
over k. This is a strong constraint as the order of any such component
in the Weil-Châtelet group divides 2g − 2.

As an application, we completely characterize (in Theorem 24) the
rationality of smooth intersections of two quadrics X ⊂ P5: It is nec-
essary and sufficient that X admit a line over the ground field.

Here is a roadmap of the paper: We review constructions of cycle
class maps over the complex numbers in Section 2; this serves as mo-
tivation for our arithmetic approach. Cycle class maps take values in
abelian varieties; we discuss Albanese morphisms from singular vari-
eties in Section 3. We turn to nonclosed fields in Section 4, discussing
how to define cycle maps over the relevant fields of definition. Our
approach is a geometric implementation of the `-adic Abel-Jacobi map
studied by Jannsen. The key invariant is presented in Section 5, in
arbitrary dimensions. An application to threefolds can be found in
Section 6.

It would be interesting to find nontrivial examples of geometrically
rational fourfolds where this machinery applies. Which principal ho-
mogeneous spaces for abelian varieties are realized by zero cycles on
curves and surfaces?
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2. Review of the complex case

Let X be a smooth complex projective variety.

2.1. Cycle class maps. Regard X as a complex manifold. We con-
sider Deligne cohomology, following [EV88, §1]. For each integer p ≥ 0
we have the complex Z(p)D of complex analytic sheaves

0→ Z(p)→ OX → Ω1
X → · · · → Ωp−1

X → 0,

where Z(p) → OX takes 1 to (2πi)p and the subsequent arrows are
exterior differentiation. Deligne cohomology is defined as the hyperco-
homology of this complex

Hq
D(X,Z(p)) := Hq(Z(p)D).

For p = 0 we recover ordinary singular cohomology

Hq
D(X,Z(0)) = Hq(X,Z).

When p = q = 1 we have

H1
D(X,Z(0)) = H0(X,O∗X).

The exponential exact sequence gives

H1
D(X,Z(1)) = H1(X,O∗X) = Pic(X).

More generally, there is a cycle class mapping [EV88, §7]

ψp : CHp(X)→ H2p
D (X,Z(p)).

The target fits into a short exact sequence [EV88, 7.9]

0→ Jp(X)→ H2p
D (X,Z(p))→ Hgp(X)→ 0.

Here the right term is the Hodge cycles, the kernel of the homomor-
phisms

H2p(X,Z(p))→ H2p(X,C)→ ⊕j=0,...,p−1H
2p−j(X,Ωj

X)

coming from Hodge theory. The left term is the intermediate Jacobian,
a complex torus

Jp(X) := H2p−1(X,C)/
(
H2p−1(X,Z(p))⊕2p−1

j=p H2p−1−j(X,Ωj
X)
)
.

The cycle class map admits an interpretation in terms of extensions
of mixed Hodge structures (see [Jan90, §9.1] and [EV88, §7.12]) that
is useful in drawing comparisons among cohomology theories. Suppose
that Z ⊂ X is a codimension-p compact complex submanifold with
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complement U = X \ Z. Consider the exact sequence for cohomology
with supports
(1)
· · ·H2p−1(X,Z(p))→ H2p−1(U,Z(p))→ H2p

|Z|(X,Z(p))→ H2p(X,Z(p)) · · ·

and the associated mixed Hodge structure on U . This is an extension
of the pure weight 2p Tate Hodge structure associated with the cycle
class of Z by the degree-(2p−1) cohomology of X, yielding an element

(2) η(Z) ∈ Ext1
MHS(Z(−p), H2p−1(X,Z)) ' Jp(X),

where the last identification is discussed in [Car87].

2.2. Algebraicity and cycle maps. Let B be a smooth connected
complex variety and

Z ↪→ X ×B
↓
B

a flat family of codimension-p subschemes. Then the induced cycle
map

Ψp
B : B → H2p

D (X,Z(p))

has the following properties:

• the image lies in a coset I for Jp(X) ⊂ H2p
D (X,Z(p));

• the induced map B → I is holomorphic for the complex struc-
ture associated with an identification I ' Jp(X);
• the smallest complex torus PB ⊂ I containing the image of
B carries the structure of an abelian variety and the induced
B → PB is algebraic with respect to that structure.

The first statement is clear as B is connected. The second may be
found in [Gri70, Ap. A]. For the third, take the closure B of B in
the Hilbert scheme and choose a projective resolution of singularities

β : B̃ → B that leaves B unchanged. Pulling back the universal flat

family over the Hilbert scheme to B̃, we obtain a flat family of cycles

Z̃ → B̃

and an induced proper holomorphic Ψp

B̃
extending Ψp

B. Note that PB̃ =

PB is dominated by the Albanese Alb(B̃), thus is an abelian variety.
Since Ψp

B̃
is a holomorphic map of projective varieties it is algebraic,

thus Ψp
B is algebraic as well.

We fix X and p as above and consider families of codimension-p
cycles Z ⊂ X. Each family yields a translate of an abelian subvariety
of Jp(X). Let Jpcyc(X) ⊂ Jp(X) denote the distinguished maximal
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(connected) abelian subvariety arising from such families of cycles. We
have

Jpcyc(X) ⊂ Ep(X) := ψp(CHp(X)) ⊂ H2p
D (X,Z(p))

and the quotient Gp(X) of the second group by the first is countable, as
there are countably-many irreducible components of the Hilbert scheme
parametrizing subschemes of X.

Recall the Griffiths group [Gri69]

CHp(X)hom/CHp(X)alg =: Griffp(X) ⊂ Bp(X) := CHp(X)/CHp(X)alg.

We have a surjective homomorphism

Bp(X)� Gp(X)

with kernel consisting of cycles Abel-Jacobi equivalent to zero. Thus
we obtain a diagram

0 → CHp(X)alg → CHp(X) → Bp(X) → 0
↓ ↓ ‖

0 → Jpcyc(X) → Dp(X) → Bp(X) → 0
‖ ↓ ↓

0 → Jpcyc(X) → Ep(X) → Gp(X) → 0

where the second row is induced by the third row. We summarize this
as follows:

Proposition 1. The cycle class map induces homomorphisms

ψp : CHp(X)
χp

−→ Dp(X)� Ep(X),

where Ep(X) (resp. Dp(X)) is an extension of a countable group Gp(X)
(resp. Bp(X)) by an abelian variety Jpcyc(X).

Given a family of cycles over a connected base B, there is an algebraic
morphism

B → P

to a principal homogeneous space for Jpcyc(X).

2.3. Vanishing results. Let X have dimension n.

• Griff1(X) = 0 by the Lefschetz (1, 1) theorem;
• Griffn(X) = 0 as all zero cycles of degree zero are algebraically

trivial.

We recall further results along these lines.

Definition 2. We say that X admits a decomposition of the diagonal
if there exist a point x ∈ X, an N ∈ N, and a rational equivalence on
X ×X

N∆X ≡ N{x} ×X + Z ′,

where Z ′ is supported on X ×D for some subvariety D ( X.
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Rationally connected varieties admit decompositions of the diagonal.

Theorem 3. [BS83, Thm. I(i)] If X admits a decomposition of the
diagonal then ψ2 is an isomorphism. Thus we obtain an isomorphism
of abelian groups

ψ2
◦ : CH2(X)hom

∼→ J2(X).

This actually holds under weaker assumptions: It suffices that the
Chow group of zero cycles on X be supported on a curve. Furthermore,
Griff2(X) = 0 provided the Chow group of zero cycles on X is sup-
ported on a surface [BS83, Thm. I(ii)]. And the Hodge conjecture for
codimension-two cycles holds provided the zero cycles are supported
on a threefold [BS83, Thm. I(iv)].

Let X be rationally connected of dimension n. Voisin has asked
whether Griffn−1(X) always vanishes when X is Fano. This is known
for certain complete intersections:

Theorem 4. [TZ14, Thm. 1.7] Let X ⊂ Pn+c be a smooth complete
intersection of hypersurfaces of degrees d1, . . . , dc with d1 + · · · + dc ≤
n− 1. Then CHn−1(X) is generated by lines.

Varieties of lines on complete intersections are connected when their
expected dimension is positive [DM98, Thm. 2.1] – the quadric surface
X ⊂ P3 being the only exception. Thus we find that Griffn−1(X) = 0.

2.4. Chow varieties. Let Chowp(X) denote the monoid of effective
codimension-p cycles on X and Chowp

d(X) the cycles of degree d for
each d ∈ Hgp(X). This carries the structure of a projective semi-normal
scheme [Kol96, Thm. 3.21]. There is a well-defined addition operation

Chowp(X)× Chowp(X)→ Chowp(X)

endowing Chowp(X) with the structure of a monoid.
Let Cp(X) denote the free abelian group generated by the connected

components C ⊂ Chowp(X). We obtain surjective homomorphisms

Cp(X)� Bp(X)� Gp(X)� CHp(X)/CHp(X)hom,

where the first three groups are countably-generated and the last is
finitely-generated. Furthermore, Griffp(X) is a subquotient of Cp(X)
– cycles parametrized by a connected component of the Chow variety
are algebraically equivalent to each other.

For each ample divisor h on X, we have a filtration by finitely-
generated subgroups

FnC
p(X) =

⊕
C⊂Chowp

d(X) such that h·d≤n

Z[C]
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This gives Cp(X), Bp(X), and Gp(X) compatible structures of induc-
tive limits of finitely generated groups, independent of the choice of h.
The same holds for Griffp(X), i.e., we restrict to cycles expressible as
sums of terms of bounded degree.

Proposition 5. There is a unique cycle class morphism of complex
analytic spaces

Ψp
d : Chowp

d(X)→ I,

where I is a coset for Jp(X) ⊂ H2p
D (X,Z(p)), compatible with the cycle

class mapping ψp. Its image generates a finite union of translates of
abelian subvarieties in the intermediate Jacobian, each contained in
Jpcyc(X).

Proof. As the Chow variety is seminormal by definition and the cycle
class is well-defined set-theoretically, it suffices to construct Ψp

d on each
connected component W of the normalization.

In Section 2.2 we discussed how to define the desired projective mor-

phism on a resolution β : W̃ → W . As it is constant on the fibers of
β, Stein factorization gives the desired descent to W . �

3. Albanese varieties

Here we work over a field k ⊂ k̄ ⊂ C with absolute Galois group Γ =
Gal(k̄/k). Our goal is to recast classical work of Lang, Serre [Ser60],
and others, with a view toward analyzing cycle maps. A good recent
survey of Albanese constructions over general fields is the appendix of
[ACMV19a].

Given a principal homogeneous space P for an abelian variety J , we
use [P ] to denote the associated class in the Weil-Châtelet group of J ,
which may be interpreted as the Galois cohomology group H1(Γ, Jk̄).
If P and P ′ and principal homogenous spaces over an abelian variety
J then multiplication induces a morphism

P ×Spec(k) P
′ → P ′′

to a principal homogeneous space P ′′ for J satisfying

[P ] + [P ′] = [P ′′].

The original construction of the Albanese goes back to [Ser60, Exp. 10,
§4]. Brian Conrad [Con17] establishes the result we require using the
duality between Albanese and Picard varieties:

Proposition 6. Let T be projective, geometrically reduced, and geomet-
rically connected, over k. Then there exists an abelian variety Alb(T ),
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a principal homogeneous space P for Alb(T ), and a morphism

iT : T → P,

all defined over k, with the following properties:

• given a morphism T → T ′ over k, where T and T ′ satisfy our
hypotheses, there is an induced morphism

Alb(T )→ Alb(T ′);

• each morphism T → P ′ to a principal homogeneous space for
an abelian variety defined over k admits a factorization through
iT .

The first property is dual to the functorial pull-back homomorphism
Pic(T ′)→ Pic(T ). Conrad actually gives a stronger universal property:
For any scheme S/k and morphism

T × S → P ′

to a principal homogeneous space for an abelian variety over S, there is
a factorization through (iT )S : T × S → P × S. However, the behavior
of the Albanese under basechange can be quite subtle for non-proper
varieties and inseparable field extensions [ACMV19a, App.].

Corollary 7. Retain the notation of Proposition 6. For each d ∈ N
there is a natural morphism

idT : Symd(T )→ Pd,

where Pd is the principal homogeneous space over Alb(T ), satisfying

[Pd] = d[P ]

in the Weil-Châtelet group of Alb(T ). When d � 0 the morphism idT
is dominant.

Hence for d sufficiently large and divisible – e.g., when T admits a
point over a degree d extension – Alb(T ) is dominated by Symd(T ).

Proof. Indeed, iT gives

Symd(T )→ Symd(P )

and addition induces
P × · · · × P︸ ︷︷ ︸

d times

→ Pd,

compatible with permutations of the factors.
For the last statement: If W is smooth, projective, and geometrically

integral then ieW : Syme(W )→ Pe,W – the morphism onto the degree-e
torsor over Alb(W ) – is dominant for large e. Let d be the sum of the
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e’s taken over all (geometrically) irreducible components of a resolution
of T . As Alb(T ) is a quotient of the product of the Albanese varieties
of these components, we find that idT is dominant as well. �

4. Passage to nonclosed fields

We continue to work over a field k ⊂ C with absolute Galois group
Γ. Let X be a smooth projective variety over k and write X̄ = Xk̄.

4.1. `-adic cycle maps. One formulation goes back to Bloch [Blo79]:
Let ` be a prime and CHp(X̄)(`) the `-primary part of the torsion, i.e.,

CHp(X̄)(`) = lim−→
ν→∞

CHp(X̄)[`ν ].

Then there is a functorial cycle class homomorphism

λp` : CHp(X̄)(`)→ H2p−1(X̄,Q`/Z`(p)).

It is an isomorphism when p = n := dim(X), in which case the target
may be interpreted as the `-primary part of the torsion of the Albanese
Alb(X̄) [Blo79, 3.9].

Jannsen [Jan88, §3] has defined cycle class maps to continuous étale
cohomology

ψp` : CHp(X)→ H2p
cont(X,Z`(p)).

The main advantage of continuous cohomology is the existence of a
Hochschild-Serre type spectral sequence under field extensions. Fix
the cohomology class of an algebraic cycle

[Z0] ∈ H0
cont(Γ, H

2p(X̄,Z`(p)))

and consider the induced

(3) ψp` : {Z ∈ CHp(X) : [Z] = [Z0]} → H1
cont(Γ, H

2p−1(X̄,Z`(p))),

the `-adic analog of the Abel-Jacobi map [Jan88, §6]. The target group
is equal to

Ext1
Γ(Z`, H2p−1(X̄,Z`(p)))

so we may compare with the extension (2). When p = n = dim(X) we
obtain

ψn` : CHn(X)hom → H1
cont(Γ, H

2n−1(X̄,Z`(n))).

When k is finitely generated over Q, the Mordell-Weil theorem yields
an injection [Jan90, 9.14]

(4) Alb(X)(k)⊗ Z` ↪→ H1
cont(Γ, H

2n−1(X̄,Z`(n))).
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Suppose we are given a smooth, projective, and geometrically con-
nected B of dimension b. Given a flat family of codimension-p sub-
schemes

Z ↪→ X ×B
↓
B

flat pullback followed by pushforward induces

H2b−1
cont (B,Z`(b))→ H2p−1

cont (X,Z`(p)),
Alb(B̄)(`) ' H2b−1(B̄,Q`/Z`(b))→ H2p−1(X̄,Q`/Z`(p)),

the latter compatible with Galois actions.

4.2. Descent of intermediate Jacobians. We recall a result on de-
scending Abel-Jacobi maps:

Theorem 8. [ACMV18, Thm. A], [ACMV19b, Thm. 1] There exists
an abelian variety J over k with the following properties:

• there exists an isomorphism

ι : Jpcyc(XC)
∼→ JC;

• given a pointed scheme (B, 0) over k that is smooth and geo-
metrically connected and a family of codimension-p cycles

Z ↪→ X ×B
↓
B

defined over k, there exists a morphism

Φ : B → J

over k such that

ΦC(b) = ι ◦Ψp
B([Zb]− [Z0]).

Moreover, J is unique up to isomorphism over k and compatible with
field extensions; Φ is unique and compatible with field extensions.

Proof. We sketch the construction of J : Fix a family of codimension-p
cycles over a smooth geometrically-connected base, all defined over k:

Z ↪→ X ×B
↓
B

Consider the induced morphisms of complex abelian varieties

Alb(BC)→ Jp(XC)
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and homomorphisms of `-adic representations

Alb(B̄)(`)→ H2p−1(X̄,Q`/Z`(p)).
Recall that Jpcyc(XC) ⊂ Jp(XC) is the maximal abelian subvariety
spanned by the images of these morphisms.

We claim that this maximal subvariety can be realized over the
ground field: There exists an abelian variety J ′ over k – the Albanese
of a geometrically-connected base of some family of cycles defined over
k – such that the cycle class map induces a surjection

J ′C � Jpcyc.

Suppose the maximal subvariety is associated with a family of cycles
over a smooth geometrically-connected base B over a finite extension
L/k. Recall that the restriction of scalars RL/k(B) parametrizes k-
morphisms Spec(L)→ B, giving a diagram of k-schemes:

RL/k(B)×Spec(k) Spec(L) → B
↓

RL/k(B)

A family of cycles Z → B pulls back to a family over RL/k ×Spec(k)

Spec(L) [Kol96, I.3.18]; pushing forward by the vertical finite morphism
yields a family of cycles over the restriction of scalars

Z ′ → RL/k(B).

Informally, we are summing cycles over points conjugate over k. The
image of the associated

RL/k(Alb(B))(`)→ H2p−1(X̄,Q`/Z`(p))
contains the image of the original homomorphism. Thus maximal im-
ages are achievable over the ground field.

It remains to show that our surjection

J ′C � Jpcyc

descends naturally to k. Consider the induced homomorphisms of tor-
sion subgroups

J ′C[`ν ]→ Jpcyc[`
ν ] ⊂ Jp(X)[`ν ].

The associated Galois data is encoded by

ρ` : J̄ ′(`)→ H2p−1(X̄,Q`/Z`(p)),
which is compatible with Γ-actions. Descent for homorphisms of abelian
varieties – quotients of a given abelian variety over k can be read off
from its `-adic representations – yields a unique J ′ � Jpcyc factoring

ρ` : J̄ ′(`)→ J(`) ↪→ H2p−1(X̄,Q`/Z`(p)),
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for every `. Indeed, first find an isogeny J ′′ → Jpcyc and then quotient
out by torsion subgroups in the kernel. The resulting J is defined over
k because each ρ` is Galois invariant. �

Proposition 9. Retain the set-up of Theorem 8, with B smooth and
geometrically connected over k and Z ⊂ X×B a family of codimension-
p cycles. Then for each d there is a morphism over k

φ : Symd(B)× Symd(B)→ J

such that

φC(
∑
i

bi,
∑
i

b′i) = ι ◦Ψp

Symd(B)×Symd(B)
(
∑
i

[Zbi ]−
∑
i

[Zb′i ]).

This morphism is compatible with field extensions.

Proof. First, pass to a resolution B[d] → Symd(B); our family of cycles
Z induces a family of cycles over B[d] by summing over d-tuples of
points. Taking differences yields a family of cycles over B[d] × B[d].
Choose a field extension L/k so that B[d] admits an L-rational point.
Theorem 8 gives a morphism

ΦL : (B[d] ×B[d])L → JL;

translate in JL so it takes the diagonal to zero. Then Galois descent
yields a morphism over k

φν : B[d] ×B[d] → J

which induces a morphism on symmetric powers

φ : Symd(B)× Symd(B)→ J,

by the standard Stein factorization argument. �

Corollary 10. Retain the assumptions of Proposition 9 and assume
there is a k-rational point

∑
i b
◦
i ∈ Symd(B). Then there is a morphism

over k
Φ : Symd(B)→ J

such that

ΦC(
∑
i

bi) = ι ◦Ψp

Symd(B)
(
∑
i

[Zbi ]−
∑
i

[Zb◦i ]).

Proposition 11. Let B be seminormal and geometrically connected
over k and fix a family of codimension-p cycles

Z ↪→ X ×B
↓
B
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as before. Then there is a morphism over k

φ : B ×B → J

such that

φC(b, b′) = ι ◦Ψp
B×B([Zb]− [Zb′ ]).

This is compatible with field extensions.

Proof. Pick a resolution β : B̃ → B whose exceptional locus is a strict

normal crossings divisor. Consider the stratification {Sξ} of B̃ asso-
ciated with its connected components, the components of the strict
normal crossings divisor, or intersections of these components. Choose

a finite extension L/k and a finite set Ξ ⊂ B̃(L) of base points for the
strata such that

• each stratum Sξ admits a distinguished ξ ∈ Ξ and thus is de-
fined over L;
• if β(Sξ1) and β(Sξ2) have the same closure then β(ξ1) = β(ξ2).

To produce Ξ and L, enumerate all the closed subvarieties of B arising
as images of strata, fix open subsets of these subvarieties contained in
the images of all the corresponding strata, specify a k̄-point in each of
these open subsets, and then select a point in each stratum lying over
the specified point.

We construct

(B̃ × B̃)L → JL

as in the proof of Proposition 9 with the diagonal of each component
mapped to zero. A priori, the morphism on the ‘off-diagonal’ compo-
nents would only be determined up to translation. Thus we insist that
if bξ1 , bξ2 ∈ Ξ are identified in B(L) then (bξ1 , b

′) and (bξ2 , b
′) go to the

same point in J . We impose the same condition on (b, bξ1) and (b, bξ2).
As B is geometrically connected, the resulting

φ̃L : (B̃ × B̃)L → JL

is well-defined, because the rational points in Ξ control how the con-

nected components of B̃ fit together. Note further that the resulting
morphism is independent of the choice of base points. This gluing data
satisfies the requisite compatibilities – we may verify this over C where
Proposition 5 applies. Since B × B is also seminormal [GT80, 5.9],
these gluing data induce

φL : (B ×B)L → JL.

Our construction is compatible with Galois actions over k so φL de-
scends to the desired morphism over k. �



14 BRENDAN HASSETT AND YURI TSCHINKEL

4.3. Application of the Albanese to cycle maps. Fix

C ⊂ Chowp
d(X),

a connected component of the Chow variety that is geometrically con-
nected. Let PC denote the principal homogeneous space for Alb(C) and
iC : C → PC the morphism constructed in Section 3.

Our next result extends [ACMV18, Thm. B]:

Theorem 12. There is a homomorphism of abelian varieties over k

ϕ : Alb(C)→ J,

where J is the model defined in Theorem 8, with the following property:
Consider the principal homogeneous space

J × P → P
(j, p) 7→ j · p,

where [P ] = ϕ([PC]), and the morphism

Φ : C → P

induced from iC. For each c1, c2 ∈ C and corresponding cycles Zc1 and
Zc2, we have

ΦC(c2) = ι(Ψp
C([Zc2 ]− [Zc1 ])) · ΦC(c1).

Proof. Corollary 7 – the Albanese is dominated by large symmetric
powers – shows that it suffices to construct compatible morphisms over
symmetric powers of C. Propositions 9 and 11 explain the passage to
symmetric powers and to singular parameter spaces. Thus we obtain
the homomorphism of abelian varieties over k

ϕ : Alb(C)→ J

such that each zero cycle
∑

i nici of degree zero goes to the corre-
sponding cycle class ι(Ψp

C(
∑

i niZci)) in J . It follows immediately that
Φ admits the desired interpretation as a cycle class map to a principal
homogeneous space for J . �

4.4. Compatibility under addition. Let C and C ′ denote geometri-
cally connected components of Chowp defined over k, so that

C ×Spec(k) C ′

is geometrically connected as well. It is also seminormal [GT80, 5.9].
Let C ′′ denote the geometrically connected component of Chowp ob-
tained via addition

α : C ×Spec(k) C ′ → C ′′
(Z,Z ′) 7→ Z + Z ′.
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We refer the reader to [Kol96, I.3.21] for a discussion of the repre-
sentability properties of Chowp underlying these morphisms.

Proposition 13. Retain the notation of Theorem 12. Suppose that
P , P ′, and P ′′ are the principal homogeneous spaces over J associated
with C, C ′, and C ′′. Then we have

[P ] + [P ′] = [P ′′].

Proof. The additivity is clear for the fiber product of C and C ′. The
morphism α induces a morphism of the corresponding principal homo-
geneous spaces for J . It is evidently an isomorphism over extensions
over which C and C ′ admit rational points. Thus it must also be an
isomorphism over its field of definition. �

5. Construction of invariants

We continue to use the notation of Section 4.

5.1. Galois actions on cycle groups.

Proposition 14. Fix a finite Galois extension L/k, σ ∈ Gal(L/k),
and an embedding L ⊂ C.

(1) If Z1 and Z2 are defined and algebraically equivalent over L.
Then σZ1 and σZ2 are as well.

(2) If Z1 and Z2 are defined over k and are algebraically equivalent
over L then there exists an N dividing [L : k] such that NZ1

and NZ2 are algebraically equivalent over k.
(3) If Z1 and Z2 are defined over L, are algebraically equivalent

over some extension of L, and Abel-Jacobi equivalent to zero
then σZ1 and σZ2 are as well.

Proof. The first assertion is trivial. The second is standard: Suppose C
is a smooth connected curve over L with rational points c1, c2 ∈ C(L)
admitting a family of cycles Z → C with Zc1 = Z1 and Zc2 = Z2.
Then the restriction of scalars RL/k(C) is defined over k and admits a
family of cycles

Z ′ → RL/k(C)

obtained by summing over the conjugates. The fibers over c1 and c2

are [L : k]Z1 and [L : k]Z2 as Z1 and Z2 are Galois invariant. This
gives the desired algebraic equivalence.

For the third statement: All our fields are embedded in C and Abel-
Jacobi equivalence is defined in terms of complex cycles. Thus we may
pass to a Galois extension L′/L with L′ ⊂ C over which our cycles are
algebraically equivalent via C as above. We have a morphism C → JL′
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such that c1 and c2 map to the same L-rational point of J . Then the
same holds after conjugating the points and the morphism. �

The groups Cp(X̄), Bp(X̄), and Griffp(X̄) all admit actions of Γ
compatible with the homomorphisms and inductive structures we in-
troduced previously. The situation for Gp(X̄) is less straightforward:

Question 15. Is Abel-Jacobi triviality an algebraic notion? Let X
be a smooth projective variety and Z a codimension-p cycle on X
homologous to zero, both defined over a field k.

• Given embeddings i1, i2 : k ↪→ C, if i1(Z) is Abel-Jacobi equiv-
alent to zero does it follow that i2(Z) is as well? cf.[ACMV19b,
Conj. 2]
• Suppose that k is finitely generated over Q and assume that
i(Z) is Abel-Jacobi equivalent to zero for some embedding i.
Does it follow that

ψp` (Z) = 0 ∈ H1
cont(Γ, H

2p−1(X̄,Z`(p))),
for each `?

The first question is of interest for cycles not algebraically equivalent
to zero. The latter statement over number fields k should be compared
to the Bloch-Beilinson conjectures – see [Jan90, Conj. 9.12] and the
discussion there for context.

5.2. The key homomorphism. Consider codimension-p cycles on X
over geometrically connected projective schemes over k. We discussed
in Section 4.4 how to add two such families. Two families are equiva-
lent if they admit fibers over k̄ that are algebraically equivalent. The
resulting group Bp(X) is generated by geometrically-connected con-
nected components C of Chowp. Indeed, given a family Z → B over
a geometrically connected base as indicated, the classifying map from
the seminormalization of B

Bν → Chowp

maps to a distinguished such component. The fiber map yields an
injection

Bp(X) ↪→ Bp(X̄)Γ

so this notation is compatible with what was introduced in Section 2.2.

Example 16. Observe that B1(X) = NS(X̄)Γ. Indeed, for sufficiently
ample divisor classes, the corresponding divisors are parametrized by
a Brauer-Severi scheme over a principal homogeneous space for the
identity component of the Picard scheme. This parameter space is
geometrically integral.
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An element ζ ∈ Bp(X) need not be represented by a cycle over k –
the base of the family representing ζ might not admit rational points.

Theorem 17. Let J be the abelian variety produced in Theorem 8.
Then there is a homomorphism

τ : Bp(X)→ H1
Γ(J̄)

with the following properties:

• For each ζ ∈ Bp(X), there is an isomorphism

ιζ : (Pτ(ζ))C
∼→ Jpcyc(XC) + ζ

of Jpcyc(XC) principal homogeneous spaces.
• Given a flat family of codimension-p cycles over a geometrically

connected base
Z ↪→ X ×B
↓
B

there is a morphism

Φ : B → Pτ([Zb])

over k such that

ι[Zb] ◦ ΦC = Ψp
BC
.

• These structures are compatible with addition of cycles and field
extensions.

This is a reformulation of Theorem 12. The compatibility under
addition is Proposition 13.

Remark 18. The `-primary parts of this homomorphism are natural
from the perspecive of the Jannsen’s `-adic Abel-Jacobi map (3)

ψp` : CHp(X)hom → H1
cont(Γ, H

2p−1(X̄,Z`(p))).
Let r = dim J and consider the homomorphism of Galois representa-
tions

H2r−1(J̄ ,Z`(r))→ H2p−1(X̄,Z`(p))
associated with the construction of J . This is the `-adic analog of the
homomorphism arising from the inclusion

JC = Jpcyc(XC) ↪→ Jp(XC)

of complex tori. Fixing a class in Bp(X) allows us to restrict the 1-
cocyle from H2p−1(X̄,Z`(p)) to

H2r−1(J̄ ,Z`(r)).
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Our construction shows that the cocycle lies in the image of the homo-
morphism cf. (4):

T`J̄ → H1
cont(Γ, H

2r−1(J̄ ,Z`(r))),
where T` is the Tate module. The inclusion

T`J̄ ↪→ J̄

yields principal homogeneous spaces for J over k with `-primary order.

Remark 19. One expects that these invariants should vanish on cycles
Abel-Jacobi equivalent to zero, i.e., τ factors through Gp(X). This
should follow from a positive resolution of both parts of Question 15.

5.3. Sample cases. Suppose that p = 1 so that

τ : NS(X̄)Γ → H1
Γ(Pic0(X̄))

is the tautological map assigning a Galois-invariant connected compo-
nent of the Picard scheme to the corresponding principal homogeneous
space for the identity component. The image is finite because classes
of divisors over the ground field form a finite-index subgroup of the
source group.

Suppose that p = n = dim(X) so that

τ : H2n(XC,Z(n))→ H1
Γ(Alb(X̄))

assigns to each degree the corresponding principal homogeneous space
for the Albanese (cf. Corollary 7).

The vanishing results in Section 2.3 allow some sharpened state-
ments:

• Suppose that p = 2 and write

N2(X̄) = CH2(X̄)/CH2(X̄)hom ⊂ Hg2(XC).

If the Chow group of zero cycles on X is supported on a surface
then Griff2(XC) = 0 and

B2(X) ⊂ N2(X̄)Γ,

with finite index as the Hodge conjecture holds in this case.
• If X is a uniruled threefold then the integral Hodge conjecture

holds [Voi06] and

N2(X̄) = N2(XC) = Hg2(XC).

• If X is a rationally connected threefold then

H4(XC,Z(2)) = Hg2(XC),

and
B2(X) ⊂ H4(XC,Z(2))Γ
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with finite index. The Galois action on H4 reflects the fact that
the cohomology is generated by algebraic cycles. The homomor-
phism τ has finite image because the classes of intersections of
divisors over the ground field span a finite index subgroup of
H4(XC,Z(2))Γ.
• If X is a prime Fano threefold then the variety of lines on X

is geometrically connected by the classification [IP99]. In this
case

B2(X) = H4(XC,Z(2)),

hence

τ : H4(XC,Z(2))→ H1(Γ, J̄).

6. Threefolds

Our main interest in these invariants is in their application to ra-
tionality questions for threefolds that are geometrically rational. We
spell out their birational implications and explore these in representa-
tive examples.

6.1. A preliminary result.

Proposition 20. If X is a smooth projective threefold, rational over
k, then B2(X) = H4(XC,Z(2))Γ.

Proof. This boils down to two observations, valid for arbitrary fields k:

• given a Galois-invariant collection of points S = {s1, . . . , sr} ∈
P3, there exists a smooth rational curve in P3 containing S and
defined over k;
• given a smooth projective curve A ⊂ P3 and e ∈ N, there exists

a geometrically integral family of rational curves intersecting A
in a reduced subscheme supported in a generic configuration of
e points.

The first assertion is a standard interpolation result; the second follows
from the first by working over the function field L of Syme(A), yielding
a rational curve defined over L with the desired incidences.

The general argument is inspired by Example 1.4 and Proposition 4.7
of [Kol08]; the latter statement establishes the birational nature of this
interpolation property.

Consider the birational map P3 99K X and a factorization

Y
β

↙
β′

↘
P3 X
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where β is a sequence of blow-ups along smooth centers, defined over
k. Pushing forward by β′ gives a split surjection

H4(YC,Z(2))� H4(XC,Z(2)),

compatible with Galois actions. Thus

H4(YC,Z(2))Γ � H4(XC,Z(2))Γ

and families of cycles in Y over a geometrically connected base project
down to such cycles in X.

It suffices to establish the following interpolation result: Fix a finite
Galois extension L/k and let S ⊂ Y denote a Galois-invariant collection
of smooth points in the exceptional locus of β defined over L; then there
exists a smooth rational curve in Y over Lmeeting the exceptional locus
precisely along S with multiplicity one. Choose formal arcs of smooth
curves in Y over L transverse to the exceptional locus at S. Post-
composing by β yields formal maps of smooth curves to P3. Morphisms
P1 → P3 approximating these to sufficiently high order – but otherwise
disjoint from the center of β – have proper transforms in Y with the
desired intersection property. We are free to take the image curves in
P3 to arbitrarily large degree, so Lagrange interpolation allows us to
produce the desired curves over L. �

Remark 21. Thus the invariant τ – introduced in Theorem 17 – is
defined on H4(XC,Z(2))Γ when X is rational over k.

6.2. Rationality criterion. Let X be a smooth and projective three-
fold over k ⊂ C such thatXC is rational. It follows then thatH3(XC,Z(2))
is torsion-free and J2(XC) is a principally polarized abelian variety iso-
morphic to a (nonempty) product of Jacobians of curves. Let J denote
its model over k from section 4.2.

Benoist and Wittenberg have established [BW19a, Cor. 2.8] that J
is isomorphic to the Jacobian of a smooth projective (not necessarily
geometrically connected) curve over k whenever X is rational over k.

We state a refinement of the results of [HT19, §11.5]:

Theorem 22. Retain the notation introduced above and assume that
X is rational over k. Let

τ : H4(XC,Z(2))Γ → H1
Γ(J̄)

denote the invariant constructed in Theorem 17. Then there exist a
smooth projective curve C with positive genus components and an iso-
morphism

i : J → J1(C),
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over k, along with a Galois equivariant homomorphism

b : H2(CC,Z(1))→ H4(XC,Z(2)),

such that the composition

H2(CC,Z(1))Γ b→ H4(XC,Z(2))Γ τ→ H1
Γ(J̄)

i→ H1
Γ(J1(C))

is the canonical homomorphism assigning each component of C over
k to the corresponding principal homogeneous space for its Jacobian
J1(C) = Alb(C).

On the notation: C is defined over k so that Γ acts via permutation
on its geometric components and thus on H2(CC,Z(1)).

After this manuscript was written, Olivier Wittenberg informed us
that he obtained a version of Theorem 22, with Theorem 24 below as a
corollary. This was developed in correspondence with Colliot-Thélène
[Wit19a, Wit19b] and Kuznetsov [Kuz19].

Proof. Our approach follows [Man68] in spirit.
Consider a birational map P3 99K X and a factorization

Z
β

↙
β′

↘
P3 X

where β is a sequence of blow-ups along smooth centers, defined over
k. The blow-up formula [Ful98, §6.7] tells us that

CH2(Z̄) = Z⊕ P ⊕ (⊕Ni=1 CH1(Āi))

where P is a permutation module associated with the points blown up
and the Ai are the smooth irreducible curves blown up.

Consider the Ai that ‘survive’ in X, i.e., positive genus curves whose
Jacobians appear as principally polarized factors in the intermediate
Jacobian of X. A positive genus curve Ai that does not survive is
explained by β′ blowing down a curve A′ with J1(A′) ' J1(A) as
principally polarized abelian varieties.

Let C denote the disjoint union of the surviving Ai, which is Γ-
invariant, as the Galois action respects the decomposition of the inter-
mediate Jacobians into simple factors. It follows that J ' J1(C). Let
b be obtained by assigning to each surviving Ai the total transforms in
X of the exceptional fibers over Ai at the point where it is blown up
in β. Thus we obtain that

CH2(X̄) = P ′ ⊕ CH1(C̄)
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where P ′ is a permutation module over Γ reflecting its action on punc-
tual and genus zero centers of β.

Suppose we are given a family of curves

Z ↪→ X ×B
↓
B

over a geometrically connected base B. Passing to residual curves
in complete intersections on X if necessary, we may assume that the
generic fibers intersect the total transforms of the exceptional divisors
associated with the components C1, . . . , Cr ⊂ C properly. Intersecting,
we obtain a morphism

σ : B → Pice1(C1)× · · · × Picer(Cr),

where e1, . . . , er depend only on the homology class of [Zb]. Over C, σ
coincides with the cycle map ψ2 from B to the appropriate component
of E2(XC), a principal homogeneous space for J2(XC).

This geometric construction shows that τ fits into the stipulated
factorization, i.e., the principal homogeneous space for J receiving the
cycles parametrized by B is necessarily of the form

Pice1(C1)× · · · × Picer(Cr),

where the ei depend on the homology classes of the corresponding
curves. �

Remark 23. (1) This result is most useful when C is determined
uniquely by X. This follows from the Torelli Theorem [Lau01]
provided the geometric components of C all have genus at least
two. Indeed, over nonclosed fields there may be numerous genus
one curves with a given elliptic curve as their Jacobian.

(2) It would be interesting to have explicit examples of rational
threefolds X admitting a diagram

X
β

↙
β′

↘
P3 P3

where β and β′ are blowups along smooth centers over k, satis-
fying the following:
• the only positive genus centers of β and β′ are irreducible

genus one curves E and E ′;
• E and E ′ are not isomorphic over k;
• J1(E) ' J1(E ′) in such a way that the subgroups Z[E] and
Z[E ′] in the Weil-Châtelet group coincide cf. [AKW17].
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The order of [E] in the Weil-Châtelet group must be at least
five. Examples in this vein, with centers K3 surfaces instead of
elliptic curves, exist for complex fourfolds [HL18].

(3) If C is a geometrically irreducible curve of genus g > 1 then
Pice(C) has order dividing 2g−2, as the canonical divisor gives
Pic2g−2(C) ' J1(C).

6.3. Complete intersections of two quadrics. The invariant gives
the following extension of Theorem 36 of [HT19].

Theorem 24. Let X ⊂ P5 be a smooth complete intersection of two
quadrics over a field k ⊂ C. Then X is rational over k if and only if
X admits a line defined over k.

We refer the reader to [HT19, §11] for specific situations where there
are no lines, e.g., the isotopy classes over R not admitting lines.

Wittenberg pointed out at the Schiermonnikoog conference that his
improvements to the argument of [HT19] also yield this result over
arbitrary fields. This is presented in [BW19b], including the case of
positive characteristic.

Proof. The reverse implication is classical so we focus on proving that
every rational X admits a line.

The behavior of our invariant τ was analyzed by X. Wang in [Wan18,
BGW17]:

• J ' J1(C), where C is the genus two curve associated with the
pencil of quadrics cutting out X;
• the variety of lines F1(X) is a principal homogeneous space for
J1(C) satisfying

2[F1(X)] = [Pic1(C)].

Assuming X is rational, there exists a genus two curve C ′ blown up in
P3 99K X such that F1(X) ' Pice(C ′) for some degree e. However, the
Torelli Theorem [Lau01] implies that C ' C ′, whence

2[Pice(C)] = [Pic1(C)].

It follows that Pic1(C) and F1(X) are trivial as principal homogeneous
spaces for J1(C), i.e.,

F1(X)(k) 6= ∅.
Thus we obtain a line over k. �

The geometry of rational curves on X is a good testing ground for
the constructions underlying the formulation of τ :

• Chow2
1(X) coincides with F1(X).
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• Chow2
2(X) admits two components, Sym2(F1(X)) and the va-

riety of conics which is an étale P3-bundle over C [HT19, §2] –
these meet along a Kummer surface bundle over C with fibers
realized as 16-nodal quartic surfaces. Both map naturally to
the same principal homogeneous space for J1(C), which may
be interpreted as both 2[F1(X)] and Pic1(C).
• Chow2

3(X) admits three components
(1) Sym3(F1(X));
(2) the product of F1(X) and the variety of conics;
(3) the variety of rational cubic curves, which carries the struc-

ture of a Gr(2, 4)-bundle over F1(X) [HT19, §4.2].
• Chow2

4(X) admits a number of components – in addition to
those parametrizing reducible curves we have the rational nor-
mal quartic curves in X and the codimension-two linear sections
of X, both of dimension eight. These together map naturally
to the trivial principal homogeneous space for J1(C) although
only the latter obviously admits a rational point.

Remark 25. Kuznetsov proposes [Kuz16, §2.4] [Kuz19] invariants of
Fano threefolds X with J2(X) ' J1(C), relating the derived category
Db(X) to derived categories of twisted sheaves on C. The Brauer group
of C is related to principal homogeneous spaces for J1(C). It would be
interesting to compare this approach with our invariant.
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