\newcommand{\etalchar}[1]{$^{#1}$} \def\cprime{$'$} \begin{thebibliography}{CTSSD87} \bibitem[AM93]{AM} A.~O.~L. Atkin and F.~Morain. \newblock Elliptic curves and primality proving. \newblock {\em Math. Comp.}, 61(203):29--68, 1993. \bibitem[BBFL07]{BBFL07} M.~J. Bright, N.~Bruin, E.~V. Flynn, and A.~Logan. \newblock The {B}rauer-{M}anin obstruction and {S}h[2]. \newblock {\em LMS J. Comput. Math.}, 10:354--377 (electronic), 2007. \bibitem[BCP97]{BCP} Wieb Bosma, John Cannon, and Catherine Playoust. \newblock The {M}agma algebra system. {I}. {T}he user language. \newblock {\em J. Symbolic Comput.}, 24(3-4):235--265, 1997. \newblock Computational algebra and number theory (London, 1993). \bibitem[Bea77]{Beau} Arnaud Beauville. \newblock Vari\'et\'es de {P}rym et jacobiennes interm\'ediaires. \newblock {\em Ann. Sci. \'Ecole Norm. Sup. (4)}, 10(3):309--391, 1977. \bibitem[Bri06]{Bright02} Martin Bright. \newblock Brauer groups of diagonal quartic surfaces. \newblock {\em J. Symbolic Comput.}, 41(5):544--558, 2006. \bibitem[BSD75]{BSD} B.~J. Birch and H.~P.~F. Swinnerton-Dyer. \newblock The {H}asse problem for rational surfaces. \newblock {\em J. Reine Angew. Math.}, 274/275:164--174, 1975. \newblock Collection of articles dedicated to Helmut Hasse on his seventy-fifth birthday, III. \bibitem[Cor07]{Corn} Patrick Corn. \newblock The {B}rauer-{M}anin obstruction on del {P}ezzo surfaces of degree 2. \newblock {\em Proc. Lond. Math. Soc. (3)}, 95(3):735--777, 2007. \bibitem[Cor10]{Corn10} Patrick Corn. \newblock Tate-{S}hafarevich groups and {$K3$} surfaces. \newblock {\em Math. Comp.}, 79(269):563--581, 2010. \bibitem[CTCS80]{CTCS80} Jean-Louis Colliot-Th{\'e}l{\`e}ne, Daniel Coray, and Jean-Jacques Sansuc. \newblock Descente et principe de {H}asse pour certaines vari\'et\'es rationnelles. \newblock {\em J. Reine Angew. Math.}, 320:150--191, 1980. \bibitem[CTKS87]{CTKS87} Jean-Louis Colliot-Th{\'e}l{\`e}ne, Dimitri Kanevsky, and Jean-Jacques Sansuc. \newblock Arithm\'etique des surfaces cubiques diagonales. \newblock In {\em Diophantine approximation and transcendence theory ({B}onn, 1985)}, volume 1290 of {\em Lecture Notes in Math.}, pages 1--108. Springer, Berlin, 1987. \bibitem[CTS]{CTS-Trans} Jean-Louis Colliot-Th\'el\`ene and Alexei~N. Skorobogatov. \newblock Sur le groupe de brauer transcendant. \newblock arXiv:1106.6312. \bibitem[CTS13]{CTS-TAMS} Jean-Louis Colliot-Th{\'e}l{\`e}ne and Alexei~N. Skorobogatov. \newblock Good reduction of the {B}rauer--{M}anin obstruction. \newblock {\em Trans. Amer. Math. Soc.}, 365(2):579--590, 2013. \bibitem[CTSSD87]{CTSSD87} Jean-Louis Colliot-Th{\'e}l{\`e}ne, Jean-Jacques Sansuc, and Peter Swinnerton-Dyer. \newblock Intersections of two quadrics and {C}h\^atelet surfaces. {II}. \newblock {\em J. Reine Angew. Math.}, 374:72--168, 1987. \bibitem[Cun07]{Cunnane} Stephen Cunnane. \newblock Rational points on {E}nriques surfaces, 2007. \newblock Ph.\ D.\ thesis, Imperial College London. \bibitem[Eis95]{Eis} David Eisenbud. \newblock {\em Commutative algebra}, volume 150 of {\em Graduate Texts in Mathematics}. \newblock Springer-Verlag, New York, 1995. \bibitem[EJ08]{ElsenhansJahnelrankone} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock {$K3$} surfaces of {P}icard rank one and degree two. \newblock In {\em Algorithmic number theory}, volume 5011 of {\em Lecture Notes in Comput. Sci.}, pages 212--225. Springer, Berlin, 2008. \bibitem[EJ10a]{EJ-CJM} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock Cubic surfaces with a {G}alois invariant double-six. \newblock {\em Cent. Eur. J. Math.}, 8(4):646--661, 2010. \bibitem[EJ10b]{EJ-JCNT} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock On the {B}rauer-{M}anin obstruction for cubic surfaces. \newblock {\em J. Comb. Number Theory}, 2(2):107--128, 2010. \bibitem[EJ11a]{EJ-IJNT} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock Cubic surfaces with a {G}alois invariant pair of {S}teiner trihedra. \newblock {\em Int. J. Number Theory}, 7(4):947--970, 2011. \bibitem[EJ11b]{ElsenhansJahnelRefinement} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock On the computation of the {P}icard group for {$K3$} surfaces. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 151(2):263--270, 2011. \bibitem[EJ11c]{ElsenhansJahnelOnePrime} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock The {P}icard group of a {$K3$} surface and its reduction modulo {$p$}. \newblock {\em Algebra Number Theory}, 5(8):1027--1040, 2011. \bibitem[Fuj02]{Fujiwara} Kazuhiro Fujiwara. \newblock A proof of the absolute purity conjecture (after {G}abber). \newblock In {\em Algebraic geometry 2000, {A}zumino ({H}otaka)}, volume~36 of {\em Adv. Stud. Pure Math.}, pages 153--183. Math. Soc. Japan, Tokyo, 2002. \bibitem[Ful98]{Fulton} William Fulton. \newblock {\em Intersection theory}, volume~2 of {\em Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics}. \newblock Springer-Verlag, Berlin, second edition, 1998. \bibitem[GS]{M2} Daniel~R. Grayson and Michael~E. Stillman. \newblock Macaulay2, a software system for research in algebraic geometry. \newblock Available at http://www.math.uiuc.edu/Macaulay2/. \bibitem[GS06]{GilleSzamuely} Philippe Gille and Tam{\'a}s Szamuely. \newblock {\em Central simple algebras and {G}alois cohomology}, volume 101 of {\em Cambridge Studies in Advanced Mathematics}. \newblock Cambridge University Press, Cambridge, 2006. \bibitem[Har96]{Harari} David Harari. \newblock Obstructions de {M}anin transcendantes. \newblock In {\em Number theory ({P}aris, 1993--1994)}, volume 235 of {\em London Math. Soc. Lecture Note Ser.}, pages 75--87. Cambridge Univ. Press, Cambridge, 1996. \bibitem[HS05]{HarariSkorobogatov} David Harari and Alexei Skorobogatov. \newblock Non-abelian descent and the arithmetic of {E}nriques surfaces. \newblock {\em Int. Math. Res. Not.}, 52:3203--3228, 2005. \bibitem[HVAV11]{HVAV} Brendan Hassett, Anthony V{\'a}rilly-Alvarado, and Patrick Varilly. \newblock Transcendental obstructions to weak approximation on general {K}3 surfaces. \newblock {\em Adv. Math.}, 228(3):1377--1404, 2011. \bibitem[Ier10]{Ieronymou} Evis Ieronymou. \newblock Diagonal quartic surfaces and transcendental elements of the {B}rauer groups. \newblock {\em J. Inst. Math. Jussieu}, 9(4):769--798, 2010. \bibitem[ISZ11]{IeronymouSkorobogatovZarhin} Evis Ieronymou, Alexei~N. Skorobogatov, and Yuri~G. Zarhin. \newblock On the brauer group of diagonal quartic surfaces. \newblock {\em J. London Math. Soc. (2)}, 83(3):659--672, 2011. \bibitem[Kat86]{Kato} Kazuya Kato. \newblock A {H}asse principle for two-dimensional global fields. \newblock {\em J. Reine Angew. Math.}, 366:142--183, 1986. \newblock With an appendix by Jean-Louis Colliot-Th{\'e}l{\`e}ne. \bibitem[Klo07]{Kloosterman} Remke Kloosterman. \newblock Elliptic {$K3$} surfaces with geometric {M}ordell-{W}eil rank 15. \newblock {\em Canad. Math. Bull.}, 50(2):215--226, 2007. \bibitem[KT04]{KT04} Andrew Kresch and Yuri Tschinkel. \newblock On the arithmetic of del {P}ezzo surfaces of degree 2. \newblock {\em Proc. London Math. Soc. (3)}, 89(3):545--569, 2004. \bibitem[KT08]{KT08} Andrew Kresch and Yuri Tschinkel. \newblock Effectivity of {B}rauer-{M}anin obstructions. \newblock {\em Adv. Math.}, 218(1):1--27, 2008. \bibitem[Lip69]{Lipman} Joseph Lipman. \newblock Rational singularities, with applications to algebraic surfaces and unique factorization. \newblock {\em Inst. Hautes \'Etudes Sci. Publ. Math.}, (36):195--279, 1969. \bibitem[Log08]{Logan} Adam Logan. \newblock The {B}rauer-{M}anin obstruction on del {P}ezzo surfaces of degree 2 branched along a plane section of a {K}ummer surface. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 144(3):603--622, 2008. \bibitem[LP81]{LP} Eduard Looijenga and Chris Peters. \newblock Torelli theorems for {K}\"ahler {$K3$} surfaces. \newblock {\em Compositio Math.}, 42(2):145--186, 1980/81. \bibitem[LvL09]{LoganVanLuijk} Adam Logan and Ronald van Luijk. \newblock Nontrivial elements of {S}ha explained through {$K3$} surfaces. \newblock {\em Math. Comp.}, 78(265):441--483, 2009. \bibitem[Man71]{ManinICM} Y.~I. Manin. \newblock Le groupe de {B}rauer-{G}rothendieck en g\'eom\'etrie diophantienne. \newblock In {\em Actes du {C}ongr\`es {I}nternational des {M}ath\'ematiciens ({N}ice, 1970), {T}ome 1}, pages 401--411. Gauthier-Villars, Paris, 1971. \bibitem[Man74]{ManinCubic} Yu.~I. Manin. \newblock {\em Cubic forms: algebra, geometry, arithmetic}. \newblock North-Holland Publishing Co., Amsterdam, 1974. \newblock Translated from Russian by M. Hazewinkel, North-Holland Mathematical Library, Vol. 4. \bibitem[Mil80]{Milne} James~S. Milne. \newblock {\em \'{E}tale cohomology}, volume~33 of {\em Princeton Mathematical Series}. \newblock Princeton University Press, Princeton, N.J., 1980. \bibitem[MP09]{MP} Davesh Maulik and Bjorn Poonen. \newblock N\'eron-{S}everi groups under specialization, 2009. \newblock arXiv:0907.4781. \bibitem[Muk84]{Mukai} Shigeru Mukai. \newblock Symplectic structure of the moduli space of sheaves on an abelian or {$K3$} surface. \newblock {\em Invent. Math.}, 77(1):101--116, 1984. \bibitem[Nik79]{Nikulin} V.~V. Nikulin. \newblock Integer symmetric bilinear forms and some of their geometric applications. \newblock {\em Izv. Akad. Nauk SSSR Ser. Mat.}, 43(1):111--177, 238, 1979. \bibitem[Pre10]{Preu} Thomas Preu. \newblock Transcendental {B}rauer-{M}anin obstruction for a diagonal quartic surface, 2010. \newblock Ph.\ D.\ thesis, Universit{\"a}t Z{\"u}rich. \bibitem[S{\etalchar{+}}09]{sage} W.\thinspace{}A. Stein et~al. \newblock {\em {S}age {M}athematics {S}oftware ({V}ersion 4.2.1)}. \newblock The Sage Development Team, 2009. \newblock {\tt http://www.sagemath.org}. \bibitem[SD93]{SD93} Peter Swinnerton-Dyer. \newblock The {B}rauer group of cubic surfaces. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 113(3):449--460, 1993. \bibitem[SD99]{SD99} Peter Swinnerton-Dyer. \newblock Brauer-{M}anin obstructions on some {D}el {P}ezzo surfaces. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 125(2):193--198, 1999. \bibitem[Ser73]{Serre} J.-P. Serre. \newblock {\em A course in arithmetic}. \newblock Springer-Verlag, New York, 1973. \newblock Translated from the French, Graduate Texts in Mathematics, No. 7. \bibitem[SGA03]{SGAI} {\em Rev\^etements \'etales et groupe fondamental ({SGA} 1)}. \newblock Documents Math\'ematiques (Paris) [Mathematical Documents (Paris)], 3. Soci\'et\'e Math\'ematique de France, Paris, 2003. \newblock S{\'e}minaire de g{\'e}om{\'e}trie alg{\'e}brique du Bois Marie 1960--61. [Algebraic Geometry Seminar of Bois Marie 1960-61], Directed by A. Grothendieck, With two papers by M. Raynaud, Updated and annotated reprint of the 1971 original [Lecture Notes in Math., 224, Springer, Berlin; MR0354651 (50 \#7129)]. \bibitem[Sko96]{SkorobogatovAJM} Alexei~N. Skorobogatov. \newblock Descent on fibrations over the projective line. \newblock {\em Amer. J. Math.}, 118(5):905--923, 1996. \bibitem[Sko01]{SkorobogatovBook} Alexei Skorobogatov. \newblock {\em Torsors and rational points}, volume 144 of {\em Cambridge Tracts in Mathematics}. \newblock Cambridge University Press, Cambridge, 2001. \bibitem[SSD05]{SkorobogatovSwinnertonDyer} Alexei Skorobogatov and Peter Swinnerton-Dyer. \newblock 2-descent on elliptic curves and rational points on certain {K}ummer surfaces. \newblock {\em Adv. Math.}, 198(2):448--483, 2005. \bibitem[SZ08]{SkorobogatovZarhin} Alexei~N. Skorobogatov and Yuri~G. Zarhin. \newblock A finiteness theorem for the {B}rauer group of abelian varieties and {$K3$} surfaces. \newblock {\em J. Algebraic Geom.}, 17(3):481--502, 2008. \bibitem[SZ12]{SkorobogatovZarhin2} Alexei~N. Skorobogatov and Yuri~G. Zarhin. \newblock The {B}rauer group of {K}ummer surfaces and torsion of elliptic curves. \newblock {\em J. Reine Angew. Math.}, 666:115--140, 2012. \bibitem[VA08]{VA08} Anthony V{\'a}rilly-Alvarado. \newblock Weak approximation on del {P}ezzo surfaces of degree 1. \newblock {\em Adv. Math.}, 219(6):2123--2145, 2008. \bibitem[vG05]{vanGeemen} Bert van Geemen. \newblock Some remarks on {B}rauer groups of {$K3$} surfaces. \newblock {\em Adv. Math.}, 197(1):222--247, 2005. \bibitem[vGS07]{SvG} Bert van Geemen and Alessandra Sarti. \newblock Nikulin involutions on {$K3$} surfaces. \newblock {\em Math. Z.}, 255(4):731--753, 2007. \bibitem[vL07]{vanLuijk} Ronald van Luijk. \newblock K3 surfaces with {P}icard number one and infinitely many rational points. \newblock {\em Algebra Number Theory}, 1(1):1--15, 2007. \bibitem[Voi86]{Voisin} Claire Voisin. \newblock Th\'eor\`eme de {T}orelli pour les cubiques de {${\bf P}^5$}. \newblock {\em Invent. Math.}, 86(3):577--601, 1986. \bibitem[Wit]{WittenbergLetter} Olivier Wittenberg. \newblock Personal letter, {A}pril 27th, 2010. \bibitem[Wit04]{Wittenberg} Olivier Wittenberg. \newblock Transcendental {B}rauer-{M}anin obstruction on a pencil of elliptic curves. \newblock In {\em Arithmetic of higher-dimensional algebraic varieties ({P}alo {A}lto, {CA}, 2002)}, volume 226 of {\em Progr. Math.}, pages 259--267. Birkh\"auser Boston, Boston, MA, 2004. \end{thebibliography}