\begin{thebibliography}{IMOU16b} \bibitem[Bea96]{Bea96} Arnaud Beauville. \newblock {\em Complex {A}lgebraic {S}urfaces}, volume~34 of {\em London Mathematical Society Student Texts}. \newblock Cambridge University Press, Cambridge, second edition, 1996. \newblock Translated from the 1978 French original by R. Barlow, with assistance from N. I. Shepherd-Barron and M. Reid. \bibitem[Bor15]{Bor15} Lev Borisov. \newblock The class of the affine line is a zero divisor in the {G}rothendieck ring, 2015. \newblock arXiv:1412.6194v3. \bibitem[CG72]{CG72} C.~Herbert Clemens and Phillip~A. Griffiths. \newblock The intermediate {J}acobian of the cubic threefold. \newblock {\em Ann. of Math. (2)}, 95:281--356, 1972. \bibitem[CK89]{CK89} Bruce Crauder and Sheldon Katz. \newblock Cremona transformations with smooth irreducible fundamental locus. \newblock {\em Amer. J. Math.}, 111(2):289--307, 1989. \bibitem[DGPS15]{DGPS} Wolfram Decker, Gert-Martin Greuel, Gerhard Pfister, and Hans Sch\"onemann. \newblock {\sc Singular} {4-0-2} --- {A} computer algebra system for polynomial computations. \newblock \url{http://www.singular.uni-kl.de}, 2015. \bibitem[Dol12]{Dol12} Igor~V. Dolgachev. \newblock {\em Classical Algebraic Geometry: A Modern View}. \newblock Cambridge University Press, Cambridge, 2012. \bibitem[Ful98]{Ful98} William Fulton. \newblock {\em Intersection theory}, volume~2 of {\em Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics}. \newblock Springer-Verlag, Berlin, 2nd edition, 1998. \bibitem[GS14]{GS14} Sergey Galkin and Evgeny Shinder. \newblock The {F}ano variety of lines and rationality problem for a cubic hypersurface, 2014. \newblock arXiv:1405.5154v2. \bibitem[Has16]{Has16} Brendan Hassett. \newblock Cubic fourfolds, {K}3 surfaces, and rationality questions. \newblock In {\em Rationality Problems in Algebraic Geometry}, volume 2172 of {\em Lecture Notes in Mathematics}. Springer, Cham; Fondazione C.I.M.E., Florence, 2016. \bibitem[HLOY03]{HLOY03} Shinobu Hosono, Bong~H. Lian, Keiji Oguiso, and Shing-Tung Yau. \newblock Fourier-{M}ukai partners of a {K}3 surface of {P}icard number one. \newblock In {\em Vector bundles and representation theory ({C}olumbia, {MO}, 2002)}, volume 322 of {\em Contemp. Math.}, pages 43--55. Amer. Math. Soc., Providence, RI, 2003. \bibitem[IM04]{IM04} Atanas Iliev and Dimitri Markushevich. \newblock Elliptic curves and rank-2 vector bundles on the prime {F}ano threefold of genus 7. \newblock {\em Adv. Geom.}, 4(3):287--318, 2004. \bibitem[IMOU16a]{IMOU16G2} Atsushi Ito, Makoto Miura, Shinnosuke Okawa, and Kazushi Ueda. \newblock The class of the affine line is a zero divisor in the {G}rothendieck ring: via {$G_2$}-{G}rassmannians, 2016. \newblock arXiv:1606.04210v2. \bibitem[IMOU16b]{IMOU16K3} Atsushi Ito, Makoto Miura, Shinnosuke Okawa, and Kazushi Ueda. \newblock The class of the affine line is a zero divisor in the {G}rothendieck ring: via {K}3 surfaces of degree 12, 2016. \newblock arXiv:1612.08497v1. \bibitem[KS16]{KS16} Alexander Kuznetsov and Evgeny Shinder. \newblock Grothendieck ring of varieties, {D}- and {L}-equivalence, and families of quadrics, 2016. \newblock arXiv:1612.07193v1. \bibitem[Kuz06]{Kuz06} A.~G. Kuznetsov. \newblock Hyperplane sections and derived categories. \newblock {\em Izv. Math.}, 70(3):447--547, 2006. \bibitem[Kuz16]{Kuz16} Alexander Kuznetsov. \newblock Derived equivalence of {I}to-{M}iura-{O}kawa-{U}eda {C}alabi-{Y}au 3-folds, 2016. \newblock arXiv:1611.08386v1. \bibitem[LL03]{LL03} Michael Larsen and Valery~A. Lunts. \newblock Motivic measures and stable birational geometry. \newblock {\em Mosc. Math. J.}, 3(1):85--95, 259, 2003. \bibitem[Mar11]{Mar11} Eyal Markman. \newblock A survey of {T}orelli and monodromy results for holomorphic-symplectic varieties. \newblock In {\em Complex and differential geometry}, volume~8 of {\em Springer Proc. Math.}, pages 257--322. Springer, Heidelberg, 2011. \bibitem[Muk87]{Muk87} S.~Mukai. \newblock On the moduli space of bundles on {$K3$} surfaces. {I}. \newblock In {\em Vector bundles on algebraic varieties ({B}ombay, 1984)}, volume~11 of {\em Tata Inst. Fund. Res. Stud. Math.}, pages 341--413. Tata Inst. Fund. Res., Bombay, 1987. \bibitem[Muk88]{Muk88} Shigeru Mukai. \newblock Curves, {$K3$} surfaces and {F}ano {$3$}-folds of genus {$\leq10$}. \newblock In {\em Algebraic geometry and commutative algebra, {V}ol.\ {I}}, pages 357--377. Kinokuniya, Tokyo, 1988. \bibitem[Muk99]{Muk99} Shigeru Mukai. \newblock Duality of polarized {$K3$} surfaces. \newblock In {\em New trends in algebraic geometry ({W}arwick, 1996)}, volume 264 of {\em London Math. Soc. Lecture Note Ser.}, pages 311--326. Cambridge Univ. Press, Cambridge, 1999. \bibitem[Ogu02]{Ogu02} Keiji Oguiso. \newblock K3 surfaces via almost-primes. \newblock {\em Math. Res. Lett.}, 9(1):47--63, 2002. \bibitem[Orl97]{Orl97} D.~O. Orlov. \newblock Equivalences of derived categories and {$K3$} surfaces. \newblock {\em J. Math. Sci. (New York)}, 84(5):1361--1381, 1997. \newblock Algebraic geometry, 7. \bibitem[Som81]{Som81} Andrew~John Sommese. \newblock Hyperplane sections. \newblock In {\em Algebraic geometry ({C}hicago, {I}ll., 1980)}, volume 862 of {\em Lecture Notes in Math.}, pages 232--271. Springer, Berlin-New York, 1981. \end{thebibliography}