\newcommand{\etalchar}[1]{$^{#1}$} \begin{thebibliography}{EKM08} \bibitem[Bae78]{Baeza} Ricardo Baeza. \newblock {\em Quadratic forms over semilocal rings}. \newblock Lecture Notes in Mathematics, Vol. 655. Springer-Verlag, Berlin, 1978. \bibitem[BCP97]{BCP} Wieb Bosma, John Cannon, and Catherine Playoust. \newblock The {M}agma algebra system. {I}. {T}he user language. \newblock {\em J. Symbolic Comput.}, 24(3-4):235--265, 1997. \newblock Computational algebra and number theory (London, 1993). \bibitem[BD85]{BD} Arnaud Beauville and Ron Donagi. \newblock La vari\'et\'e des droites d'une hypersurface cubique de dimension {$4$}. \newblock {\em C. R. Acad. Sci. Paris S\'er. I Math.}, 301(14):703--706, 1985. \bibitem[Bri06]{Bright} Martin Bright. \newblock Brauer groups of diagonal quartic surfaces. \newblock {\em J. Symbolic Comput.}, 41(5):544--558, 2006. \bibitem[CD89]{CD} Fran{\c{c}}ois~R. Cossec and Igor~V. Dolgachev. \newblock {\em Enriques surfaces. {I}}, volume~76 of {\em Progress in Mathematics}. \newblock Birkh\"auser Boston Inc., Boston, MA, 1989. \bibitem[Cor10]{Corn} Patrick Corn. \newblock Tate-{S}hafarevich groups and {$K3$} surfaces. \newblock {\em Math. Comp.}, 79(269):563--581, 2010. \bibitem[Eis95]{Eis} David Eisenbud. \newblock {\em Commutative algebra}, volume 150 of {\em Graduate Texts in Mathematics}. \newblock Springer-Verlag, New York, 1995. \newblock With a view toward algebraic geometry. \bibitem[EJa]{ElsenhansJahnelRefinement} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock On the computation of the {P}icard group for {$K3$} surfaces. \newblock arXiv:1006.1724. \bibitem[EJb]{ElsenhansJahnelOnePrime} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock The {P}icard group of a {$K3$} surface and its reduction modulo $p$. \newblock arXiv:1006.1972. \bibitem[EJ08a]{ElsenhansJahnelrankone} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock {$K3$} surfaces of {P}icard rank one and degree two. \newblock In {\em Algorithmic number theory}, volume 5011 of {\em Lecture Notes in Comput. Sci.}, pages 212--225. Springer, Berlin, 2008. \bibitem[EJ08b]{ElsenhansJahneldoublecover} Andreas-Stephan Elsenhans and J{\"o}rg Jahnel. \newblock {$K3$} surfaces of {P}icard rank one which are double covers of the projective plane. \newblock In {\em Higher-dimensional geometry over finite fields}, volume~16 of {\em NATO Sci. Peace Secur. Ser. D Inf. Commun. Secur.}, pages 63--77. IOS, Amsterdam, 2008. \bibitem[EKM08]{EKM} Richard Elman, Nikita Karpenko, and Alexander Merkurjev. \newblock {\em The algebraic and geometric theory of quadratic forms}, volume~56 of {\em American Mathematical Society Colloquium Publications}. \newblock American Mathematical Society, Providence, RI, 2008. \bibitem[FH91]{FH} William Fulton and Joe Harris. \newblock {\em Representation theory: A first course}, volume 129 of {\em Graduate Texts in Mathematics}. \newblock Springer-Verlag, New York, 1991. \newblock Readings in Mathematics. \bibitem[Gro66]{EGAIV} Alexander Grothendieck. \newblock \'{E}l\'ements de g\'eom\'etrie alg\'ebrique. {IV}. \'{E}tude locale des sch\'emas et des morphismes de sch\'emas. {III}. \newblock {\em Inst. Hautes \'Etudes Sci. Publ. Math.}, (28):255, 1966. \bibitem[GS06]{GilleSzamuely} Philippe Gille and Tam{\'a}s Szamuely. \newblock {\em Central simple algebras and {G}alois cohomology}, volume 101 of {\em Cambridge Studies in Advanced Mathematics}. \newblock Cambridge University Press, Cambridge, 2006. \bibitem[Har77]{Hart} Robin Hartshorne. \newblock {\em Algebraic geometry}. \newblock Springer-Verlag, New York, 1977. \newblock Graduate Texts in Mathematics, No. 52. \bibitem[Har92]{Harris} Joe Harris. \newblock {\em Algebraic geometry: A first course}, volume 133 of {\em Graduate Texts in Mathematics}. \newblock Springer-Verlag, New York, 1992. \bibitem[Har96]{Harari} David Harari. \newblock Obstructions de {M}anin transcendantes. \newblock In {\em Number theory ({P}aris, 1993--1994)}, volume 235 of {\em London Math. Soc. Lecture Note Ser.}, pages 75--87. Cambridge Univ. Press, Cambridge, 1996. \bibitem[Has99]{Has99} Brendan Hassett. \newblock Some rational cubic fourfolds. \newblock {\em J. Algebraic Geom.}, 8(1):103--114, 1999. \bibitem[HS05]{HarariSkorobogatov} David Harari and Alexei Skorobogatov. \newblock Non-abelian descent and the arithmetic of {E}nriques surfaces. \newblock {\em Int. Math. Res. Not.}, 52:3203--3228, 2005. \bibitem[Ier10]{Ieronymou} Evis Ieronymou. \newblock Diagonal quartic surfaces and transcendental elements of the {B}rauer groups. \newblock {\em J. Inst. Math. Jussieu}, 9(4):769--798, 2010. \bibitem[ISZ09]{IeronymouSkorobogatovZarhin} Evis Ieronymou, Alexei~N. Skorobogatov, and Yuri~G. Zarhin. \newblock On the {B}rauer group of diagonal quartic surfaces, 2009. \newblock arXiv:0912.2865. \bibitem[KT09]{KreschTschinkel} Andrew Kresch and Yuri Tschinkel. \newblock Effectivity of the {B}rauer-{M}anin obstructions on surfaces, 2009. \newblock arXiv:1005.4331. \bibitem[Kuz10]{Kuz} Alexander Kuznetsov. \newblock Derived categories of cubic fourfolds. \newblock In {\em Cohomological and geometric approaches to rationality problems}, volume 282 of {\em Progr. Math.}, pages 219--243. Birkh\"auser Boston Inc., Boston, MA, 2010. \bibitem[LvL09]{LoganVanLuijk} Adam Logan and Ronald van Luijk. \newblock Nontrivial elements of {S}ha explained through {$K3$} surfaces. \newblock {\em Math. Comp.}, 78(265):441--483, 2009. \bibitem[Mil80]{Milne} James~S. Milne. \newblock {\em \'{E}tale cohomology}, volume~33 of {\em Princeton Mathematical Series}. \newblock Princeton University Press, Princeton, N.J., 1980. \bibitem[MS09]{MS} Emanuele Macri and Paolo Stellari. \newblock Fano varieties of cubic fourfolds containing a plane, 2009. \newblock arXiv:0909.2725. \bibitem[S{\etalchar{+}}09]{sage} W.\thinspace{}A. Stein et~al. \newblock {\em {S}age {M}athematics {S}oftware ({V}ersion 4.2.1)}. \newblock The Sage Development Team, 2009. \newblock {\tt http://www.sagemath.org}. \bibitem[Shi04]{Shimada} Ichiro Shimada. \newblock Supersingular {$K3$} surfaces in characteristic 2 as double covers of a projective plane. \newblock {\em Asian J. Math.}, 8(3):531--586, 2004. \bibitem[SSD05]{SkorobogatovSwinnertonDyer} Alexei Skorobogatov and Peter Swinnerton-Dyer. \newblock 2-descent on elliptic curves and rational points on certain {K}ummer surfaces. \newblock {\em Adv. Math.}, 198(2):448--483, 2005. \bibitem[Swa85]{Swan} Richard~G. Swan. \newblock {$K$}-theory of quadric hypersurfaces. \newblock {\em Ann. of Math. (2)}, 122(1):113--153, 1985. \bibitem[SZ08]{SkorobogatovZarhin} Alexei~N. Skorobogatov and Yuri~G. Zarhin. \newblock A finiteness theorem for the {B}rauer group of abelian varieties and {$K3$} surfaces. \newblock {\em J. Algebraic Geom.}, 17(3):481--502, 2008. \bibitem[SZ09]{SkorobogatovZarhin2} Alexei~N. Skorobogatov and Yuri~G. Zarhin. \newblock The {B}rauer group of {K}ummer surfaces and torsion of elliptic curves, 2009. \newblock arXiv:0911.2261. \bibitem[vG05]{vanGeemen} Bert van Geemen. \newblock Some remarks on {B}rauer groups of {$K3$} surfaces. \newblock {\em Adv. Math.}, 197(1):222--247, 2005. \bibitem[vL07]{vanLuijk} Ronald van Luijk. \newblock K3 surfaces with {P}icard number one and infinitely many rational points. \newblock {\em Algebra Number Theory}, 1(1):1--15, 2007. \bibitem[Voi86]{Voisin} Claire Voisin. \newblock Th\'eor\`eme de {T}orelli pour les cubiques de {${\bf P}^5$}. \newblock {\em Invent. Math.}, 86(3):577--601, 1986. \bibitem[Wit04]{Wittenberg} Olivier Wittenberg. \newblock Transcendental {B}rauer-{M}anin obstruction on a pencil of elliptic curves. \newblock In {\em Arithmetic of higher-dimensional algebraic varieties ({P}alo {A}lto, {CA}, 2002)}, volume 226 of {\em Progr. Math.}, pages 259--267. Birkh\"auser Boston, Boston, MA, 2004. \end{thebibliography}