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Abstract

A cubic fourfold is a smooth cubic hypersurface of dimension four;

it is special if it contains a surface not homologous to a complete in-

tersection. Special cubic fourfolds form a countably in�nite union of

irreducible families C

d

, each a divisor in the moduli space C of cubic

fourfolds. For an in�nite number of these families, the Hodge structure

on the nonspecial cohomology of the cubic fourfold is essentially the

Hodge structure on the primitive cohomology of a K3 surface. We say

that this K3 surface is associated to the special cubic fourfold. In these

cases, C

d

is related to the moduli space N

d

of degree d K3 surfaces. In

particular, C contains in�nitely many moduli spaces of polarized K3

surfaces as closed subvarieties. We can often construct a correspon-

dence of rational curves on the special cubic fourfold parametrized by

the K3 surface which induces the isomorphism of Hodge structures.

For in�nitely many values of d, the Fano variety of lines on the generic

cubic fourfold of C

d

is isomorphic to the Hilbert scheme of length-two

subschemes of an associated K3 surface.
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1 Introduction

Let X be a special cubic fourfold, h its hyperplane class, and T the class of

an algebraic surface not homologous to any multiple of h

2

. The discriminant

d is de�ned as the discriminant of the saturated lattice spanned by h

2

and

T . Let C

d

denote the special cubic fourfolds of discriminant d (x 3.2).

Theorem 1.0.1 (Classi�cation of Special Cubic Fourfolds) ( Theorems

3.1.2, 3.2.3, and 4.3.1) C

d

� C is an irreducible divisor and is nonempty i�

d > 6 and d � 0; 2(mod 6).

In section four, we give concrete descriptions of special cubic fourfolds with

small discriminants and explain how certain Hodge structures at the bound-

ary of the period domain arise from singular cubic fourfolds.

The nonspecial cohomology of a special cubic fourfold consists of the mid-

dle cohomology orthogonal to the distinguished classes h

2

and T . In many

cases, it is essentially the primitive cohomology of a K3 surface of degree

d, which is said to be associated to the special cubic fourfold. Furthermore,

the varieties C

d

are often closely related to moduli spaces of polarized K3

surfaces. Let C

mar

d

denote the marked special cubic fourfolds of discriminant

d (x 5.2). This is the normalization of C

d

if d � 2 (mod 6) and is a double

cover of the normalization otherwise.

Theorem 1.0.2 (Associated K3 Surfaces and Maps of Moduli Spaces)

(Theorems 5.1.3 and 5.2.4) Special cubic fourfolds of discriminant d have

associated K3 surfaces i� d is not divisible by four, nine, or any odd prime

p � �1(mod 3). In these cases, there is an open immersion of C

mar

d

into the

moduli space of polarized K3 surfaces of degree d.

In particular, an in�nite number of moduli spaces of polarized K3 surfaces

may be realized as moduli spaces of special cubic fourfolds.

We can explain geometrically the existence of certain associated K3 sur-

faces. The Fano variety of X parametrizes the lines contained in it. For

certain special cubic fourfolds these Fano varieties are closely related to K3

surfaces:

Theorem 1.0.3 (Geometry of Fano Varieties) (Theorem 6.1.4) Assume

that d = 2(n

2

+n+1) where n is an integer � 2, and let X be a generic special

cubic fourfold of discriminant d. Then the Fano variety of X is isomorphic

to the Hilbert scheme of length-two subschemes of a K3 surface associated to

X.
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We should point out that the hypothesis on d is stronger than necessary, but

simpli�es the proof considerably. Combining this with the results on maps of

moduli spaces, we obtain examples of distinct K3 surfaces with isomorphic

Hilbert schemes of length-two subschemes (Proposition 6.2.2.)

One motivation for this work is the rationality problem for cubic fourfolds.

The Hodge structures on cubic fourfolds and their relevance to rationality

questions have previously been studied by Zarhin [30]. Izadi [15] also studied

Hodge structures on cubic hypersurfaces with a view toward rationality ques-

tions. All the examples of cubic fourfolds known to be rational ([10] [27] [5]

[28]) are special and have associated K3 surfaces. Indeed, a birational model

of the K3 surface is blown up in the birational map from P

4

to the cubic

fourfold. Is this the case for all rational cubic fourfolds? In a subsequent

paper [14], we shall apply the methods of this paper to give new examples

of rational cubic fourfolds. We show there is a countably in�nite union of

divisors in C

8

parametrizing rational cubic fourfolds (C

8

corresponds to the

cubic fourfolds containing a plane).

Throughout this paper we work over C . We use the term `generic' to mean

`in the complement of some Zariski closed proper subset.' The term `lattice'

will denote a free abelian group equipped with a nondegenerate symmetric

bilinear form. I would like to acknowledge the help I received in the course of

this project. I bene�tted from conversations with David Eisenbud and Elham

Izadi, and from suggestions by Walter Baily and Robert Friedman. Barry

Mazur provided important insights and comments, and Johan de Jong made

many helpful observations and pointed out some errors in an early version of

this paper. Finally, Joe Harris introduced me to this beautiful subject; his

inspiration and advice have been invaluable.

2 Hodge Theory of Cubic Fourfolds

2.1 Cohomology and the Abel-Jacobi Map

Let X be a smooth cubic fourfold. The Hodge diamond of X has the form:

1

0 0

0 1 0

0 0 0 0

0 1 21 1 0
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Let L denote the cohomology group H

4

(X;Z), L

0

the primitive cohomology

H

4

(X;Z)

0

, and h; i the symmetric nondegenerate intersection form on L. If

h is the hyperplane class then h

2

2 L and L

0

= (h

2

)

?

.

Our best tool for understanding the middle cohomology of X is the Abel-

Jacobi mapping. Let F be the Fano variety of lines ofX, the subvariety of the

Grassmannian G (1; 5) parametrizing lines contained in X. This is a smooth

fourfold ([1] x1). Let Z � F � X be the `universal line', with projections p

and q. The Abel-Jacobi map is de�ned as the map

� = p

�

q

�

: H

4

(X;Z)! H

2

(F;Z):

Let M = H

2

(F;Z), M

0

the primitive cohomology, and g the class of the

hyperplane on F (induced from the Grassmannian). Recall that �(h

2

) corre-

sponds to the lines meeting a codimension-two subspace of P

5

, so �(h

2

) = g.

Following [3] and [5], we de�ne the Beauville canonical form (; ) on M so

that g and M

0

are orthogonal, (g; g) = 6, and (x; y) =

1

6

g

2

xy for x; y 2 M

0

.

Extending by linearity we obtain an integral form on all of M .

Proposition 2.1.1 (Beauville-Donagi [5] Prop. 6) The Abel-Jacobi map

induces an isomorphism between L

0

and M

0

; moreover, for x; y 2 L

0

we

have (�(x); �(y)) = �hx; yi.

Indeed, we may interpret � is an isomorphism of Hodge structuresH

4

(X; C )

0

!

H

2

(F; C )

0

(�1): The �1 means that the weight is shifted by two; this reverses

the sign of the intersection form.

Proposition 2.1.2 The middle integral cohomology lattice of a cubic four-

fold is

L

�

=

(+1)

�21

� (�1)

�2

i.e. the intersection form is diagonalizable over Z with entries �1 along the

diagonal. The primitive cohomology is

L

0

�

=

B �H �H � E

8

� E

8

where B =

�

2 1

1 2

�

, H =

�

0 1

1 0

�

is the hyperbolic plane, and E

8

is the posi-

tive de�nite quadratic form associated to the corresponding Dynkin diagram.
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We �rst prove the statement on the full cohomology. L is unimodular by

Poincar�e duality and has signature (21; 2) by the Riemann bilinear relations.

L is odd because hh

2

; h

2

i = h

4

= 3. Using the theory of inde�nite quadratic

forms (e.g. [25] ch.5 x2.2) we conclude the result.

Now we turn to the primitive cohomology L

0

. By Proposition 2.1.1 it

su�ces to compute M

0

; we �rst compute M . In [5] Prop. 6, it is shown

that F is a deformation of a variety S

[2]

, where S is a degree-fourteen K3

surface and S

[2]

denotes the Hilbert scheme of length-two zero-dimensional

subschemes of S (also called the blown-up symmetric square of S). By [3] x6

we have the canonical orthogonal decomposition

H

2

(S

[2]

;Z) = H

2

(S;Z)�

?

Z�

where (�; �) = �2 and the restriction of (; ) to H

2

(S;Z) is the intersection

form. Geometrically, the divisor 2� corresponds to the nonreduced length-

two subschemes of S. The cohomology lattice of a K3 surface is well-known

(cf. [16] Prop. 1.2)

H

2

(S;Z)

�

=

� := H

�3

� (�E

8

)

�2

;

so M

�

=

H

�3

� (�E

8

)

�2

� (�2): Furthermore, the polarization g = 2f �

5�; where f 2 H

2

(S;Z) satis�es (f; f) = 14 [5]. The automorphisms of

H

2

(S;Z) act transitively on the primitive vectors of a given nonzero length

([16] Theorem 2.4). If v

1

and w

1

are elements of the �rst summand H with

(v

1

; v

1

) = (w

1

; w

1

) = 0 and (v

1

; w

1

) = 1, then we may take f = v

1

+ 7w

1

and g = 2v

1

+ 14w

1

� 5�. Using v

1

+ 3w

1

� 2� and � � 5w

1

as the �rst two

elements of a basis of M

0

, we obtain the result. �

Remark: Note that our computation shows that L

0

is even.

2.2 Hodge Theory and the Torelli Map

We review Hodge theory in the context of cubic fourfolds; a general in-

troduction to Hodge theory is [12]. Recall that a complete marking of a

polarized cubic fourfold is an isomorphism � : H

4

(X;Z) ! L mapping

the square of the hyperplane class to h

2

2 L. If we are given a complete

marking, the complex structure on X determines a distinguished subspace

F

3

(X) = H

3;1

(X; C ) � L

0

C

satisfying the following properties:

1. F

3

(X) is isotropic with respect to the intersection form <;>;
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2. the Hermitian form H(u; v) = �hu; �vi on F

3

(X) is positive.

Let Q � P(L

0

C

) be the quadric hypersurface de�ned by (1), and let U � Q be

the topologically open subset where (2) also holds. U is a homogeneous space

for the real Lie group SO(L

0

R

) = SO(20; 2). This group has two components;

one of them reverses the orientation on the negative de�nite part of L

0

R

,

which coincides with (F

3

� F

3

) \ L

0

R

. Changing the orientation corresponds

to exchanging F

3

and F

3

(see x6 of the appendix to [24] for details). Hence

the two connected components of U parametrize the subspaces F

3

and F

3

=

H

1;3

(X) respectively; we denote them D

0

and D

0

. The component D

0

is a

twenty-dimensional open complex manifold, called the local period domain

for cubic fourfolds.

Let � denote the group of automorphisms of L preserving the intersection

form and the distinguished class h

2

, and �

+

� � the subgroup stabilizing D

0

.

This is the index-two subgroup of � which preserves the orientation on the

negative de�nite part of L

0

R

. �

+

acts holomorphically on D

0

from the left; for

a point in D

0

corresponding to the marked cubic fourfold (X; �) the action is


(X; �) = (X; 
 ��). The orbit space D = �

+

nD

0

exists as an analytic space

and is called the global period domain.

Two cubic fourfolds are isomorphic i� they are projectively equivalent.

Let C denote the coarse moduli space for smooth cubic fourfolds, constructed

as a Geometric Invariant Theory quotient [18] ch.4 x2. Each cubic fourfold

determines a point in D, and the corresponding map � : C �! D is called

the period map. By general results of Hodge theory, this is a holomorphic

map of twenty-dimensional analytic spaces. For cubic fourfolds we can say

much more. First, we have the following result due to Voisin:

Theorem 2.2.1 (Torelli Theorem for Cubic Fourfolds[29]) � : C ! D is an

open immersion of analytic spaces.

In particular, if X

1

and X

2

are cubic fourfolds and there exists an isomor-

phism of Hodge structures  : H

4

(X

1

; C ) ! H

4

(X

2

; C ), then X

1

and X

2

are

isomorphic. Second, � is not just an analytic map:

Proposition 2.2.2 D is a quasi-projective variety of dimension twenty and

� : C ! D is an algebraic map.

In x6 of the appendix to [24], it is shown that the manifold D

0

is a bounded

symmetric domain of type IV. The group �

+

is arithmetically de�ned and acts
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holomorphically on D

0

. In this situation we may introduce the Borel-Baily

compacti�cation ([2] x10): there exists a compacti�cation of D

0

, compatible

with the action of �

+

, so that the quotient is projective. Moreover, �

+

nD

0

is a Zariski open subvariety of this quotient. To complete the proof, we use

the following consequence of A. Borel's extension theorem [6]:

Let D

0

be a bounded symmetric domain, and G an arithmetically de�ned

torsion-free group of automorphisms. Let D = GnD

0

be the quasi-projective

quotient space, and Z an algebraic variety. Then any holomorphic map Z !

D is algebraically de�ned.

While �

+

has torsion, some normal subgroup H of �nite index is torsion-

free ([24] IV Lemma 7.2). Let �

+

(N) denote the subgroup of �

+

acting

trivially on L=NL. For some large N , �

+

=H acts faithfully on L=NL so

�

+

(N) � H and is torsion-free. Let C(N) denote the moduli space of cubic

fourfolds with marked Z=NZ cohomology. This is a �nite (and perhaps

disconnected) cover of C; we use C

0

(N) to denote a connected component.

Let D(N) = �

+

(N)nD

0

, which is also �nite over D. The period map lifts to a

map �

N

: C

0

(N)! D(N): By Borel's theorem �

N

is algebraic, and a descent

argument implies � is also algebraic. �

Remark: It follows that C is a Zariski open subset of D and its complement

is de�ned by algebraic equations.

3 Special Cubic Fourfolds

3.1 Basic De�nitions

De�nition 3.1.1 A cubic fourfold X is special if it contains an algebraic

surface T not homologous to a complete intersection.

Let A(X) = H

2;2

(X) \H

4

(X;Z), which is positive de�nite by the Riemann

bilinear relations. The Hodge conjecture is true for cubic fourfolds [31], so

A(X) is generated (over Q) by the classes of algebraic cycles; X is special

if and only if the rank of A(X) is at least two. This is equivalent to saying

that the rank of L \ F

3

(X)

?

is at least two, or that L

0

\ F

3

(X)

?

6= 0. A

Hodge structure x 2 D

0

is special if L

0

\ F

3

(x)

?

is nonzero.

Theorem 3.1.2 (Structure of Special Cubic Fourfolds) Let K � L be

a positive de�nite rank-two saturated sublattice containing h

2

, [K] the �

+
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orbit of K, and C

[K]

the cubic fourfolds X such that A(X) � K

0

for some

K

0

2 [K]. Every special cubic fourfold is contained in some C

[K]

, which is an

irreducible algebraic divisor of C, and is nonempty for all but a �nite number

of [K].

Given such a lattice K, we set K

0

= K \ L

0

. Let D

0

K

be the x 2 D

0

such that K

0

� x

?

; this is a hyperplane section of D

0

� P(L

0

C

). Each

special Hodge structure is contained in some D

0

K

. Let K

?

denote the or-

thogonal complement to K in L. We see that D

0

K

is a topologically open

subset of a quadric hypersurface in P(K

?

C

), has dimension nineteen, and

classi�es Hodge structures structures on the lattice K

?

. As in the pre-

vious section, we can prove that D

0

K

is a bounded symmetric domain of

type IV. Let �

+

K

= f
 2 �

+

: 
(K) � Kg. As before, the quotient

�

+

K

nD

0

K

is quasi-projective. Furthermore, the induced holomorphic map

�

+

K

nD

0

K

! �

+

nD

0

= D is algebraically de�ned, so its image is an irreducible

algebraic divisor.

We enumerate the divisors parametrizing special Hodge structures in D.

Each one corresponds to �

+

K

nD

0

K

for some K � L as above, but K is not

uniquely determined. K

1

and K

2

give rise to the same divisor if and only if

K

1

= 
(K

2

) for some 
 2 �

+

, i.e. �

+

K

1

and �

+

K

2

are conjugate in �

+

. Let D

[K]

denote the corresponding irreducible divisor in D. Since C is Zariski open in

D (Proposition 2.2.2), C

[K]

= C \ D

[K]

is an irreducible algebraic divisor in

C, and D

[K]

� (D � C) for �nitely many [K]. �

De�nition 3.1.3 Let (K; h; i) be a positive de�nite rank-two lattice contain-

ing a distinguished element h

2

with hh

2

; h

2

i = 3. A marked (resp. labelled)

special cubic fourfold is a cubic fourfold X with the data of a primitive imbed-

ding of lattices K ,! A(X) preserving h

2

(resp. the image of such an imbed-

ding.) A special cubic fourfold is typical if it has a unique labelling.

We write D

lab

[K]

for �

+

K

nD

0

K

. The morphism D

lab

[K]

! D

[K]

is birational (indeed

D

lab

[K]

is the normalization of D

[K]

), so a general point in D

[K]

has a unique

labelling. The �ber product D

lab

[K]

�

D

C will be denoted C

lab

[K]

.

3.2 Discriminants and Special Cubic Fourfolds

De�nition 3.2.1 The discriminant of a labelled special cubic fourfold (X;K)

is the determinant of the intersection matrix of K.
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Proposition 3.2.2 Let (X;K) be a labelled special cubic fourfold of discrim-

inant d and let v be a generator of K

0

.

1. d > 0 and d � 0;�1 (mod 3) ;

2. d

0

:= hv; vi =

(

3d if d � �1 (mod 3)

d

3

if d � 0 (mod 3)

;

3. hv; L

0

i =

(

3Z if d � �1 (mod 3)

Z if d � 0 (mod 3)

;

4. d is even.

The �rst three statements are straightforward computations, so we omit their

proofs. The fourth follows from the remark after Proposition 2.1.2. �

We re�ne the results of the previous section by classifying the orbits of

the rank-two sublattices under the action of �

+

. The following theorem is a

consequence of Theorem 3.1.2 and Proposition 3.2.4:

Theorem 3.2.3 (Irreducibility Theorem) The special cubic fourfolds pos-

sessing a labelling of discriminant d form an irreducible (possibly empty)

algebraic divisor C

d

� C.

Elements of C

d

are called special cubic fourfolds of discriminant d; the cor-

responding rank-two lattice is denoted K

d

. We write D

d

for D

[K

d

]

, D

lab

d

for

D

lab

[K

d

]

, C

d

for C

[K

d

]

, and C

lab

d

for C

lab

[K

d

]

.

Proposition 3.2.4 Let K and K

0

be saturated rank-two nondegenerate sub-

lattices of L containing h

2

. Then K = 
(K

0

) for some 
 2 �

+

if and only if

K and K

0

have the same discriminant.

We claim it su�ces to prove the result for �. We �nd some g 2 ���

+

stabi-

lizing sublattices with every possible discriminant. Take g to be the identity

except on the second hyperbolic plane in the orthogonal decomposition for

L

0

; on this component set g equal to multiplication by �1. (We refer to the

computation of L

0

in Proposition 2.1.2.)

Now we analyze the action of � on our rank-two sublattices, or equiva-

lently, on saturated nondegenerate rank-one sublattices K

0

� L

0

. We apply

the results of Nikulin on discriminant groups and quadratic forms; see [22]
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or [9] for basic de�nitions and proofs. The elements of � �x h

2

, so they act

trivially on the discriminant groups d(Zh

2

) and d(L

0

) [22] x1.5. Conversely,

any automorphism of L

0

that acts trivially on d(L

0

) extends to an element

of � [22] 1.5.1.

Let K

0

denote a lattice generated by an element v with hv; vi = d

0

, q

K

0

the quadratic form on d(K

0

), and q the quadratic form on d(L

0

). The lattice

L

0

is the unique even lattice of signature (20; 2) with discriminant quadratic

form q [22] 1.14.3. Any saturated codimension-one sublattice K

?

� L

0

is the

orthogonal complement in L of a rank-two sublatticeK, so there is an induced

isomorphism d(K

?

)

�

=

d(K) [22] 1.6.1, and d(K

?

) is generated by at most

two elements. This implies the isomorphism class of K

?

is determined by its

signature and discriminant form, and any isomorphism of d(K

?

) preserving

the discriminant quadratic form is induced by an automorphism of K

?

[22]

1.14.3.

Two primitive imbeddings of i : K

0

! L

0

di�ering only by an element of

� are said to be congruent. Applying the results of [22] x1.15 in our situation,

we �nd the primitive imbeddings i : K

0

! L

0

correspond to the following

data:

1. a subgroup H

q

� d(L

0

);

2. a subgroup H

K

0

� d(K

0

);

3. an isomorphism � : H

K

0

! H

q

preserving the restrictions of the

quadratic forms to these subgroups, with graph �

�

= f(h; �(h)) : h 2

H

K

0

g � d(K

0

)� d(L

0

);

4. an even lattice K

?

with complementary signature and discriminant

form q

K

?, and an isomorphism �

K

? : q

K

? ! ��, where � = ((q

K

0

�

�q)j�

?

�

)=�

�

(and �

?

�

is the orthogonal complement to �

�

with respect

to q

K

0

� q).

Another imbedding i

0

with data (H

0

q

; H

0

K

0

; �

0

; (K

0

)

?

; �

(K

0

)

?
) is congruent to i

if and only if H

K

0

= H

0

K

0

and � = �

0

.

Our proof now divides into two cases. In the �rst case H

q

= f0g, or

equivalently, hi(K

0

); L

0

)i = Z (i.e. 3jd). By the characterization above, all

primitive imbeddings of K

0

are congruent. In the second case H

q

= d(L

0

)

�

=

Z=3Z, or equivalently, hi(K

0

); L

0

)i = 3Z. In this case, d(K

0

) has a subgroup

H

K

0

of order three and 3jd

0

. There are two possible isomorphisms between

d(L

0

) and H

K

0

, thus two congruence classes of imbeddings of K

0

into L

0

. �
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Using [22] x1.15 and Proposition 3.2.2, we can compute the discriminant

quadratic forms of the lattices K

?

d

:

Proposition 3.2.5 If d � 0 (mod 6) then d(K

?

d

)

�

=

Z=

d

3

Z � Z=3Z, which

is cyclic unless 9jd. We may choose this isomorphism so that q

K

?

d

(0; 1) =

2

3

(mod 2Z) and q

K

?

d

(1; 0) = �

3

d

(mod 2Z). If d � 2 (mod 6) then d(K

?

d

)

�

=

Z=dZ. We may choose a generator u so that q

K

?

d

(u) =

2d�1

3d

(mod 2Z).

4 Examples

4.1 Special Cubic Fourfolds with Small Discriminants

The examples here are discussed in more detail in [13]. If T is a smooth

surface contained in a cubic fourfold X then hT; T i = c

2

(N

T=X

) = 6h

2

T

+

3h

T

K

T

+K

2

T

��

T

where �

T

is the topological Euler characteristic and h

T

is

the hyperplane class restricted to T .

4.1.1 d=8: Cubic Fourfolds Containing a Plane (see [29])

X contains a plane P , so that hP; P i = 3 and our marking is

K

8

=

h

2

P

h

2

3 1

P 1 3

:

The cubic fourfolds in C

8

generally contain other surfaces, like quadric sur-

faces and quartic del Pezzo surfaces.

4.1.2 d=12: Cubic Fourfolds Containing a Cubic Scroll

X contains a rational normal cubic scroll T , so that hT; T i = 7 and our

marking is

K

12

=

h

2

T

h

2

3 3

T 3 7

:

11



4.1.3 d=14: Cubic Fourfolds Containing a Quartic Scroll/Pfa�an

Cubic Fourfolds

X is a cubic fourfold containing a rational normal quartic scroll T , so that

hT; T i = 10 and our marking is

K

14

=

h

2

T

h

2

3 4

T 4 10

:

Special cubic fourfolds of discriminant 14 generally also contain quintic del

Pezzo surfaces and quintic rational scrolls. One can show that the quartic

scrolls, quintic scrolls, and quintic del Pezzos on X form families of dimen-

sions two, two, and �ve respectively. Note that Morin [17] uses a spurious

parameter count to deduce that the quartic scrolls form a one dimensional

family. From this, he concludes incorrectly that every cubic fourfold contains

a quartic scroll.

Another description of an open subset of C

14

is the Pfa�an construction

of Beauville and Donagi [5]. The dimension counts above follow easily from

their results. They also show that the Pfa�an cubic fourfolds are rational.

Finally, we should point out that the cubic fourfolds containing two disjoint

planes possess a marking with discriminant 14, and thus are also contained

in C

14

. (See [10] and [27] for more discussion of these examples.)

4.1.4 d=20: Cubic Fourfolds Containing a Veronese

X contains a Veronese surface V , so that hV; V i = 12 and our marking is

K

20

=

h

2

V

h

2

3 4

V 4 12

:

4.2 d=6: Cubic Fourfolds with Double Points

A double point is ordinary if its projectivized tangent cone is smooth. Cubic

hypersurfaces in P

5

with an ordinary double point are stable in the sense

of Geometric Invariant Theory. This is proved using Mumford's numerical

criterion for stability ([18] x2.1) and the methods of ([18] x4.2). Let

~

C denote

the quasi-projective variety parametrizing cubic fourfolds with (at worst) a

single ordinary double point.

12



Let X

0

be a cubic fourfold with a single ordinary double point p. Projec-

tion from p gives a birational map �

p

: X

0

9 9 KP

4

which can be factored

X

0

= Bl

S

(P

4

)

q

1

���! X

0

q

2

?

?

y

P

4

where q

1

is the blow-up of the double point p and q

2

is the blow-down of

the lines contained in X

0

passing through p. These lines are parametrized

by a surface S � P

4

, which is the complete intersection of a quadric and

a cubic. The quadric is nonsingular because p is ordinary; the complete

intersection is smooth because p is the only singularity of X

0

. In particular,

S is a sextic K3 surface. The inverse map �

�1

p

is given by the linear system

of cubic polynomials through this K3 surface. Conversely, given any sextic

K3 surface contained in a smooth quadric, the image of P

4

under this linear

system is a cubic fourfold with an ordinary double point. Note that the sextic

K3 surfaces contained in a singular quadric hypersurface are precisely those

containing a cubic plane curve.

This construction suggests that we associate a sextic K3 surface to any

element of

~

C � C:

Proposition 4.2.1 The Torelli map extends to an open immersion ~� :

~

C !

D: The closed set

~

C

6

:=

~

C � C is mapped into D

6

.

In x 5.2 we shall see that D

6

coincides with the period domain for sextic K3

surfaces. A detailed proof of the proposition is given in x4 of [29], so we

merely explain some details needed for our calculations. (It also follows from

the delicate analysis of singular cubic fourfolds in x 6.3.) Let X

0

be a cubic

fourfold with an ordinary double point and let S be the associated K3 surface.

Smoothings of ordinary double points of even codimension have monodromy

satisfying T

2

= I, so any smoothing ofX

0

yields a pure limiting mixed Hodge

structure H

4

lim

. The corresponding point of the period domain is denoted

~�(X

0

). The limiting Hodge structure may be computed with the Clemens-

Schmid exact sequence [7], which implies there is a natural imbedding of the

primitive cohomology H

2

(S; C )

0

(�1) into H

4

lim

. The orthogonal complement

to the image consists of a rank-two lattice of integral (2; 2) classes

K

6

=

h

2

T

h

2

3 0

T 0 2

13



so ~�(X

0

) 2 D

6

.

4.3 Existence of Special Cubic Fourfolds

D

d

� D is nonempty if and only if d is positive and congruent to 0; 2 (mod 6)

(Proposition 3.2.2), so we restrict to these values of d.

Theorem 4.3.1 (Existence of Special Cubic Fourfolds) Let d > 6 be

an integer with d � 0; 2 (mod 6) . Then the divisor C

d

is nonempty.

We saw in the last section why there are no smooth cubic fourfolds of dis-

criminant six: D

6

corresponds to the limiting Hodge structures arising from

cubic fourfolds with double points. In the next section we shall explain why

there are no cubic fourfolds of discriminant two: D

2

corresponds to the lim-

iting Hodge structures arising from another class of singular cubic fourfolds.

Is the complement D � C equal to D

2

[ D

6

?

To prove the theorem, we need the following lemmas:

Lemma 4.3.2 Let P be an inde�nite even rank-two lattice representing six.

Assume that P is not isomorphic to any of the following:

�

6 1

1 0

� �

6 2

2 0

� �

6 0

0 �2

� �

6 3

3 0

�

:

Then there exists a smooth sextic K3 surface S lying on a smooth quadric

with Pic(S)

�

=

P .

Lemma 4.3.3 Let P be a rank-two inde�nite even lattice, f 2 P a primitive

element with d := f

2

> 0, and assume there is no E 2 P with E

2

= �2

and fE = 0. Then there exists a K3 surface S with Pic(S) = P and f a

polarization on S. Moreover, f is very ample unless there exists an elliptic

curve C on S with C

2

= 0 and fC = 1 or 2.

Recall that � denotes the lattice isomorphic to the middle cohomology of

a K3 surface. Using the results of x2 of [16], there exists an imbedding

P ,! �. So for some elements of the period domain P equals the lattice of

(1; 1)-classes. The surjectivity of the period map for K3 surfaces implies the

existence of a K3 surface S with Picard group P so that f contained in the

K�ahler cone of S (see pp. 127 of [4]). This implies f is a polarization of S.

14



To complete the proof, we apply Saint Donat's results for linear systems on

K3 surfaces [23]. Speci�cally, we use Theorems 3.1, 5.2, and 6.1, along with

the analysis of �xed components in x2.7. �

To prove Lemma 4.3.2, we note that the image under jf j is not contained

in a singular quadric because P �

�

6 3

3 0

�

(i.e. S does not contain a plane

cubic). �

Now we prove the theorem. Let S be one of the K3 surfaces constructed in

Lemma 4.3.2 and X

0

the corresponding singular cubic fourfold. Let v 2 P be

primitive with respect to the sextic polarization. Recall that H

2

(S; C )

0

(�1)

is naturally imbedded into the limiting Hodge structure H

4

lim

arising from

X

0

. The image of v is an integral class of type (2; 2) in H

4

lim

, denoted v

0

.

Relabel H

4

lim

by letting K

d

denote the saturation of the lattice Zh

2

+Zv

0

. By

Proposition 3.2.2, d = �

1

2

disc(P ). For each d � 0; 2 (mod 6) ; d > 6, there

exist lattices P satisfying the hypotheses of Lemma 4.3.2 with discriminant

�2d. If d = 6n (resp. d = 6n + 2) we may take

P =

�

6 0

0 �2n

�

(resp.

�

6 2

2 �2n

�

):

Set x

0

= ~�(X

0

) so that x

0

2 D

6

\D

d

: We construct a smoothing � : X !

�

0

where X

t

is smooth for t 6= 0, and �(X

t

) 2 D

d

. Let 
 : � ! D be a

holomorphic map such that 
(0) = x

0

and 
(u) 2 D

d

� D

6

for u 6= 0. The

existence of such a curve follows from the construction of D as the quotient

�

+

nD

0

. Because ~� is an open immersion, we may shrink � so that 
 lifts

through ~� , giving a map � : � !

~

C. Consequently, there exists a rami�ed

base change b : �

0

! � and a family X ! �

0

so that X

t

= �(b(t)). By

construction we have X

t

2 C \ �

�1

(D

d

) = C

d

for t 6= 0, so C

d

6= ;: �

4.4 d=2: The Determinantal Cubic Fourfold

The determinantal cubic fourfoldX

0

is de�ned by the homogeneous equation:

R :=

�

�

�

�

�

�

a b c

b d e

c e f

�

�

�

�

�

�

= 0:

It is singular where the 2� 2 minors of the determinant are simultaneously

zero, i.e. along a Veronese surface V . We shall consider deformations X ! �
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of X

0

with equations R + tG, where G is the equation of a smooth cubic

fourfold, and the curve C � V de�ned by the equation Gj

V

= 0 is also

smooth. Let S be the double cover of V branched over C, a degree-two K3

surface.

Theorem 4.4.1 The limiting mixed Hodge structure arising from X ! �

is pure and special of discriminant two. The orthogonal complement to K

2

is isomorphic to the primitive Hodge structure H

2

(S; C )

0

(�1).

This result will not be used elsewhere in this paper. Its proof is essentially

a calculation on the semistable reduction for X using the Clemens-Schmid

exact sequence [7] (see [13] for details). Geometrically, X

0

is contained in

the indeterminacy locus of the Torelli map, but after blowing up the map is

well-de�ned at the generic point of the exceptional divisor. Moreover, this

exceptional divisor maps birationally to D

2

� D.

5 Associated K3 Surfaces

5.1 Nonspecial Cohomology

De�nition 5.1.1 The nonspecial cohomology lattice of a labelled special cu-

bic fourfold (X;K

d

) is de�ned as the orthogonal complement K

?

d

. The non-

special cohomology, denoted W

X;K

d

, is the polarized Hodge structure induced

on K

?

d

by the Hodge structure on H

4

(X; C )

0

.

Proposition 5.1.2 Let (X;K

14

) be a generic Pfa�an cubic fourfold. Then

there exists a degree-fourteen K3 surface S and an isomorphism of Hodge

structures W

X;K

14

= H

2

(S; C )

0

(�1):

This is a consequence of [5] Prop. 6 (cf. x 2.1) and Proposition 6.1.1. How-

ever, it is best explained by observing that the birational map P

4

9 9 KX blows

up a surface birational to S, which therefore parametrizes a correspondence

of rational curves on X.

Motivated by this example, we determine the special cubic fourfolds whose

nonspecial cohomology is isomorphic to the primitive cohomology of a polar-

ized K3 surface:

16



Theorem 5.1.3 (Existence of Associated K3 Surfaces) Let (X;K

d

) be

a labelled special cubic fourfold of discriminant d, with nonspecial cohomol-

ogy W

X;K

d

. There exists a polarized K3 surface (S; f) such that W

X;K

d

�

=

H

2

(S; C )

0

(�1) if and only if the following conditions are satis�ed:

1. 46 j d and 96 j d;

2. p6 j d if p is an odd prime, p � �1(mod 3).

We say that the pair (S; f) is associated to (X;K

d

).

We �rst show the theorem boils down to a computation of lattices (Propo-

sition 5.1.4). Recall that a pseudo-polarization is a divisor f contained in

the closure of the K�ahler cone with (f; f) > 0; the primitive cohomology

of a pseudo-polarized K3 surface (S; f) is the orthogonal complement to f

in H

2

(S;Z). Let �

0

d

be a lattice isomorphic to the primitive middle coho-

mology of a degree d K3 surface. The isomorphism asserted in the theo-

rem implies an isomorphism of lattices K

?

d

�

=

��

0

d

. On the other hand,

given a labelled special cubic fourfold (X;K

d

) and an isomorphism of lat-

tices K

?

d

�

=

��

0

d

, W

X;K

d

(+1) has the form of the primitive cohomology of a

pseudo-polarized K3 surface. Indeed, since the Torelli map for K3 surfaces is

surjective [4] [26], there exists a pseudo-polarized K3 surface (S; f) such that

H

2

(S; C )

0

(�1)

�

=

W

X;K

d

. Moreover, X is smooth so H

4

(X;Z)

0

\ H

2;2

(X)

does not contain any classes with self-intersection +2 ([29] x4 Prop. 1).

Therefore there are no (�2)-curves on S orthogonal to f , and f is actually

a polarization.

Proposition 5.1.4 Retain the notation above. K

?

d

�

=

��

0

d

if and only if the

conditions of Theorem 5.1.3 are satis�ed.

The automorphisms of � = H

2

(S;Z) act transitively on the primitive vectors

with (v; v) = d 6= 0 ([16] Theorem 2.4), so

�

0

d

�

=

(�d)�H

�2

� (�E

8

)

�2

;

let y denote the distinguished element with (y; y) = �d. The discriminant

group d(�

0

d

) and quadratic form q

�

0

d

are equal to Z(

y

d

)=Zy, with q

�

0

d

(

y

d

) =

�1

d

( mod 2Z).

We determine when d(K

?

d

) and d(��

0

d

) are isomorphic as groups with a

Q=2Z-valued quadratic form. We �rst consider the case d � 2 (mod 6). Here

17



both discriminant groups are isomorphic to Z=dZ, so we just need to check

when the quadratic forms are conjugate by an automorphism of Z=dZ. Let u

and w be generators of d(K

?

d

) and d(��

0

d

) such that q

K

?

d

(u) =

2d�1

3d

(mod 2Z)

and q

��

0

d

(w) =

1

d

(mod 2Z) (see Proposition 3.2.5). The quadratic forms are

conjugate if and only if the integer

2d�1

3

is a square modulo 2d, or equivalently,

�3 is a square modulo 2d. By quadratic reciprocity this is the case if and only

if d is not divisible by four and any odd prime pjd satis�es p 6� �1 (mod 3).

A similar argument holds in the case d � 0 (mod 6).

We have seen that the conditions on d are necessary for K

?

d

to be isomor-

phic to ��

0

d

. On the other hand, K

?

d

is the unique even lattice of signature

(19; 2) with discriminant form (d(K

?

d

); q

K

?

d

) [22] 1.14.3. Hence if the discrim-

inant forms of K

?

d

and ��

0

d

agree then K

?

d

�

=

��

0

d

. �

5.2 Isomorphisms of Period Domains

We retain the notation of x 2.1 and x 5.1. Let � denote the automorphisms

of �, and �

d

the automorphisms �xing some primitive v 2 � with (v; v) = d,

which yield automorphisms of �

0

d

= v

?

. As in x 2.2, let N

0

d

be the local

period domain for degree d K3 surfaces, an open nineteen-dimensional com-

plex manifold. Let �

+

d

� �

d

denote the subgroup stabilizing N

0

d

. As before,

N

0

d

is a bounded symmetric domain of type IV, �

+

d

is an arithmetic group

acting holomorphically on N

0

d

, and the quotient N

d

:= �

+

d

=N

0

d

is therefore a

quasi-projective variety, the global period domain for degree d K3 surfaces.

We introduce a bit more notation for special cubic fourfolds as well. Let

G

+

d

� �

+

d

be the subgroup acting trivially on K

d

and let D

mar

d

denote the

marked special Hodge structures of discriminant d, modulo the action of

G

+

d

. The �ber product D

mar

d

�

D

C is written C

mar

d

, the marked special cubic

fourfolds of discriminant d. We have natural forgetting maps D

mar

d

! D

lab

d

and C

mar

d

! C

lab

d

:

Proposition 5.2.1 G

+

d

= �

+

d

if d � 2 (mod 6) and G

+

d

� �

+

d

is an index-two

subgroup if d � 0 (mod 6). The natural map D

mar

d

! D

lab

d

is an isomorphism

if d � 2 (mod 6) and a double cover if d � 0 (mod 6). Furthermore, D

mar

d

=

G

+

d

nD

0

d

and thus is connected for all d 6= 6.

We begin with the �rst statement. The lattice K

d

has no automorphisms

preserving h

2

if d � 2 (mod 6), so G

+

d

= �

+

d

. If d � 0 (mod 6) then K

d

has an involution, which acts on K

0

d

as multiplication by �1. We claim

18



it extends to an element 
 2 �

+

d

. By Proposition 3.2.4 we may assume

K

0

d

= Z(v

1

+

d

6

w

1

). We use the notation of x 2.1, so v

1

and w

1

form a basis

for a hyperbolic summand H � L

0

. Choose 
 equal to multiplication by �1

on both hyperbolic summands of L

0

and equal to the identity elsewhere. We

have that 
 2 �

+

d

but 
 62 G

+

d

, so G

+

d

is a proper subgroup of �

+

d

.

The second statement follows immediately from the �rst. As for the

third statement, recall that D

lab

d

= �

+

d

nD

0

d

. Hence for d � 2 (mod 6) the

result is immediate. For d � 0 (mod 6), we must check that any 
 2 �

+

d

acting nontrivially on K

d

also acts nontrivially on D

0

d

. For d 6= 6, if 
 acts

nontrivially on K

d

then the induced action on d(K

d

) is not equal to �1.

However, the groups d(K

d

) and d(K

?

d

) are isomorphic, so the induced action

on d(K

?

d

) is not �1. Now D

0

d

is a topologically open subset of a quadric

hypersurface in P(K

?

d


C ), so only scalar multiplications act trivially on D

0

d

.

In particular, 
 necessarily acts nontrivially. �

Remark: There exists an element 
 2 �

+

6

� G

+

6

acting trivially on K

?

6

. It

follows that D

mar

6

6= G

+

6

nD

0

6

but rather that D

lab

6

= G

+

6

nD

0

6

.

Theorem 5.2.2 Let d be a positive integer such that there exists an isomor-

phism j

d

: K

?

d

! ��

0

d

(see Proposition 5.1.4.) Choose orientations on the

negative de�nite parts of K

?

d

and ��

0

d

compatible with j

d

, so there is an in-

duced isomorphism of local period domains D

0

d

and N

0

d

. If d 6= 6 then there

is an induced isomorphism i

d

: D

mar

d

! N

d

; we also have D

lab

6

�

=

N

6

:

The isomorphism of period domains depends on the choice of j

d

. Each j

d

induces an isomorphism of discriminant groups j

0

d

: d(K

?

d

) ! d(��

0

d

) pre-

serving the Q=2Z-valued quadratic forms on these groups [22] x1.3. We

denote the set of such isomorphisms Isom(d(K

?

d

); d(��

0

d

)); the group fn 2

Z=dZ : n

2

= 1g acts faithfully and transitively on this set.

Theorem 5.2.3 For d 6= 6, the various isomorphisms i

d

: D

mar

d

! N

d

correspond to elements of Isom(d(K

?

d

); d(��

0

d

))=(�1). The isomorphism

i

6

: D

lab

6

! N

6

is unique.

These two theorems have the following corollary:

Corollary 5.2.4 (Immersions into Moduli Spaces of K3 Surfaces) Let

d 6= 6 be a positive integer such that there exists an isomorphism j

d

: K

?

d

!

��

0

d

. Then there is an imbedding i

d

: C

mar

d

,! N

d

; unique up to the choice

of an element of Isom(d(K

?

d

); d(��

0

d

))=(�1): Moreover, there is a unique

imbedding i

6

:

~

C

lab

6

,! N

6

.
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As we shall see in x6, geometrical considerations will sometimes mandate

speci�c choices of i

d

(e.g. in the case d = 14).

We prove the �rst theorem. First, we compare the action of �

+

d

on �

0

d

to

the action of G

+

d

on K

?

d

. We claim that �

+

d

is the group of automorphisms

of �

0

d

preserving the orientation on the positive de�nite part of �

0

d


 R and

acting trivially on the discriminant group d(�

0

d

). This follows from the results

of [22] x1.4, which imply that any such automorphism extends uniquely to an

element of �

+

d

. Similarly,G

+

d

is the group of automorphisms ofK

?

d

preserving

the orientation on the negative de�nite part of K

?

d


 R and acting trivially

on the discriminant group d(K

?

d

).

Now suppose we are given an isomorphism j

d

: K

?

d

! ��

0

d

. This induces

isomorphisms D

0

d

! N

0

d

, G

+

d

! �

+

d

, and i

d

: G

+

d

nD

0

d

! �

+

d

nN

0

d

. Applying

Proposition 5.2.1, we obtain an isomorphism i

d

: D

mar

d

! N

d

for d 6= 6. The

remark after the proposition also yields an isomorphism i

6

: D

lab

6

! N

6

. �

We turn to the proof of the second theorem. We must determine when

two di�erent isomorphisms j

1

d

: K

?

d

! ��

0

d

and j

2

d

: K

?

d

! ��

0

d

induce the

same isomorphism i

d

: G

+

d

nD

0

d

! �

+

d

nN

0

d

. If j

2

d

= ��j

1

d

for some � 2 �

+

d

then

j

1

d

and j

2

d

induce the same isomorphisms of period domains. Also, if j

1

d

= �j

2

d

then j

1

d

and j

2

d

induce the same isomorphism between D

0

d

and N

0

d

, because

these manifolds lie in the projective spaces P(K

?

d


 C ) and P(�

0

d


 C ).

On the other hand, assume that j

1

d

and j

2

d

induce the same isomorphism

between G

+

d

nD

0

d

and �

+

d

nN

0

d

. Then there exist 
 2 G

+

d

and � 2 �

+

d

such

that j

1

d

� 
 and � � j

2

d

induce the same isomorphism between D

0

d

and N

0

d

, so

j

1

d

� 
 = �� � j

2

d

. We conclude that the isomorphisms between G

+

d

nD

0

d

and

�

+

d

nN

0

d

correspond to certain elements of Isom(d(K

?

d

); d(��

0

d

))=(�1).

It remains to check that each element of Isom(d(K

?

d

); d(��

0

d

))=(�1) ac-

tually arises from an isomorphism between K

?

d

and ��

0

d

respecting the ori-

entations on the negative de�nite parts. Now K

?

d

has an automorphism g

reversing the orientation on the negative part and acting trivially on d(K

d

).

Take g to be the identity except on a hyperbolic summand of the orthogonal

decomposition for K

?

d

; on the hyperbolic summand set g equal to multiplica-

tion by �1. Hence it su�ces to show that the automorphisms of K

?

d

induce

all the automorphisms of d(K

?

d

), which is proved in [22], Theorem 1.14.2 and

Remark 1.14.3. �
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6 Fano Varieties of Special Cubic Fourfolds

6.1 Introduction and Necessary Conditions

Here we provide a geometric explanation for the K3 surfaces associated to

some special cubic fourfolds. The general philosophy underlying our approach

is due to Mukai [19],[20],[21]. Let S be a polarized K3 surface and let M

S

be a moduli space of simple sheaves on S. Quite generally, M

S

is smooth

and possesses a natural nondegenerate holomorphic two-form ([19] Theorem

0.1). Furthermore, the Chern classes of the `quasi-universal sheaf' on S�M

S

induce correspondences between S and M

S

. IfM

S

is compact of dimension

two then it is a K3 surface isogenous to S; the Hodge structure of M

S

can be read o� from the Hodge structure of S and the numerical invariants

of the sheaves ([20] Theorem 1.5). Conversely, given a variety F with a

nondegenerate holomorphic two-form and an isogeny H

2

(S;Q ) ! H

2

(F;Q),

one can try to interpret F as a moduli space of sheaves on S. In the case

where F is a K3 surface, we often have such interpretations ([20] Theorem

1.9). Note that F

�

=

S

[n]

can be interpretted as the moduli space of ideal

sheaves on S of colength n; such sheaves are simple.

Proposition 6.1.1 Let X be a cubic fourfold with Fano variety F . Assume

there is an isomorphism between F and S

[2]

for some K3 surface S. Then X

has a labelling K

d

such that S is associated to (X;K

d

); i

d

: C

mar

d

,! N

d

may

be chosen so that i

d

(X;K

d

) = S. If (X

1

; K

d

) is a generic element of C

mar

d

and S

1

= i

d

(X

1

; K

d

), then the Fano variety F

1

is isomorphic to S

[2]

1

.

For nongeneric X

1

the isomorphism between F

1

and S

[2]

1

can break down. Let

X

1

contain two disjoint planes �

1

and �

2

, so that X

1

2 C

14

. The proposition

holds for d = 14, but the (birational) map between F

1

and S

[2]

1

acquires

indeterminacy at the lines supported in the �

i

(see [13] for details).

We prove the proposition. As in x2.1, there is an isomorphismH

2

(F;Z)

�

=

H

2

(S;Z) �

?

Z� and the hyperplane class g = af � b� where f is some

polarization of S with d := (f; f). Let K

?

d

equal �

�1

(H

2

(S;Z)

0

(�1)) where

� is the Abel-Jacobi map, and set K

d

= (K

?

d

)

?

: Applying Theorem 5.2.2

with j

d

= �jK

?

d

, we obtain a map i

d

with the desired properties. To explain

i

d

geometrically, we need the following result:

Theorem 6.1.2 (Deformation Spaces of S

[2]

[3]) Let S be a K3 surface

and 2� � S

[2]

be the elements supported at a single point. The deformation
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space of S

[2]

is smooth and has dimension twenty-one. Deformations of the

form S

[2]

1

correspond to a divisor in this space which may be characterized as

the deformations for which � remains a divisor.

We de�ne C

d

as the deformations of F for which � remains algebraic. Ap-

plying Theorem 6.1.2, there is some small analytic neighborhood in C

d

where

the deformations are isomorphic to S

[2]

1

for some deformation S

1

of S. This

isomorphism holds in an open �etale neighborhood of X in C

d

, so a generic

cubic fourfold in C

d

has Fano variety of the form S

[2]

1

. �

For which values of d are the conclusions of Proposition 6.1.1 valid? The-

orem 5.1.3 gives su�cient conditions for the existence of a K3 surface asso-

ciated to (X;K

d

), but these do not guarantee that F

�

=

S

[2]

:

Proposition 6.1.3 Assume that the Fano variety of a generic special cubic

fourfold of discriminant d is isomorphic to S

[2]

for some K3 surface S. Then

there exist positive integers n and a such that d = 2

n

2

+n+1

a

2

:

This is equivalent to the existence of a line bundle on S

[2]

of degree 108,

the degree of the Fano variety. For instance, Fano varieties of special cubic

fourfolds of discriminant 74 are not generally of the form S

[2]

, because 74a

2

=

2(n

2

+ n + 1) has no integral solutions (see [11]).

We can produce in�nitely many examples of special cubic fourfolds with

Fano variety isomorphic to the symmetric square of a K3 surface:

Theorem 6.1.4 Assume that d = 2(n

2

+ n + 1) where n is an integer � 2.

Then the Fano variety of a generic special cubic fourfold X of discriminant

d is isomorphic to S

[2]

, where S is a K3 surface associated to (X;K

d

).

This is proved in the next two sections. The condition on d corresponds to

setting a = 1 in Proposition 6.1.3. The proof of the theorem suggests that

the condition of the proposition is the correct su�cient condition.

6.2 Ambiguous Symplectic Varieties

De�nition 6.2.1 Let F be an irreducible symplectic K�ahler manifold, and

assume that there exist K3 surfaces S

1

and S

2

and isomorphisms r

1

: F ! S

[2]

1

and r

2

: F ! S

[2]

2

such that r

�

1

�

1

6= r

�

2

�

2

. Then we say that F is ambiguous.
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Our �rst example is a special case of a construction of Beauville and Debarre

[8]. Let S be a smooth quartic surface in P

3

, p

1

+ p

2

a generic point in

S

[2]

, and `(p

1

+ p

2

) the line containing p

1

and p

2

. By Bezout's theorem

`(p

1

+p

2

)\S = p

1

+p

2

+ q

1

+ q

2

: Setting j(p

1

+p

2

) = q

1

+ q

2

for each p

1

+p

2

,

we obtain a birational involution j : S

[2]

9 9 KS

[2]

: If S contains no lines then

j extends to a biregular morphism. Let f

4

be the degree-four polarization

on S and the corresponding class on S

[2]

. Following [8], one may compute

j

�

(x) = �x + (x; f

4

� �) (f

4

� �) on H

2

(S

[2]

;Z). Setting r

2

= j � r

1

, we �nd

that F = S

[2]

is ambiguous.

We digress to give another beautiful example of ambiguous varieties:

Proposition 6.2.2 Assume that 3jd and that the Fano variety F of a generic

cubic fourfold in C

d

is isomorphic to S

[2]

1

for some K3 surface S

1

. Then F is

ambiguous.

This follows immediately from Proposition 6.1.1 and the results of x5.2, which

imply that C

lab

d

imbeds into a Z=2Z-quotient of N

d

if 3jd.

6.3 Construction of the Examples

Let X

0

2

~

C

6

, F

0

its Fano variety of lines, and S the sextic K3 surface as-

sociated to X

0

(see x 4.2). Let � : X ! � be a family in

~

C with central

�ber X

0

and X

t

smooth for t 6= 0. Let F ! � be the corresponding fam-

ily of Fano varieties and X

0

! �

0

a semistable reduction of X ! �. For

simplicity, we assume that the central �ber of the semistable family is of the

form X

0

0

= X

0

[ Q where X

0

= Bl

S

(P

4

) is the desingularization of X

0

, Q is

a smooth quadric fourfold, and Q

0

= X

0

\ Q is the smooth quadric in P

4

containing S. This is the case if � is a su�ciently generic smoothing of X

0

.

Lemma 6.3.1 F

0

is singular along the lines through the double point, which

are parametrized by S. These singularities are ordinary codimension-two

double points and the blow-up � : Bl

S

F

0

! F

0

desingularizes F

0

. If S

0

does

not contain a line then Bl

S

F

0

�

=

S

[2]

.

The �rst part follows from x 4.2 and [1] 1.10. For the second part, we realize

� by blowing up the Grassmannian G (1; 5) along the locus L(p) of lines

containing p. The �ber square

S ! F

0

# #

L(p) ! G (1; 5)
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gives a natural closed imbedding of normal cones C

S

F

0

,! C

L(p)

G (1; 5)jS:

The projectivization P(C

L(p)

G (1; 5)) corresponds to P(C

6

=S), where S is the

restriction of the universal subbundle. Note L(p)

�

=

P

4

and C

L(p)

G (1; 5)

`

corresponds to the lines � such that ` 2 � � P

4

. For ` 2 Sing(F

0

) the

�ber of P(C

S

F

0

)

`

corresponds to those lines � such that ` 2 � � Q

0

. These

are parametrized by a smooth conic curve, hence F

0

has codimension-two

ordinary double points along S and Bl

S

F

0

is smooth.

This description implies that we can regard Bl

S

F

0

as a parameter space

for certain curves on X

0

. These curves are of the following types:

1. lines on X

0

disjoint from p;

2. unions of proper transforms of lines through p and lines contained in

Q

0

� X

0

.

These in turn may be identi�ed with:

1. two-secants � to S � P

4

;

2. three-secants � with a distinguished point s 2 � \ S.

We emphasize that each line meeting S in more than two points is contained

in Q

0

but not in S, and thus is a three-secant to S. We claim elements of S

[2]

naturally correspond to curves of this type. For each ideal sheaf I of colength

two there is a unique line � containing the corresponding subscheme. Either

� is a two-secant, or � is a three-secant and s is the support of I=I

�\S

. �

Lemma 6.3.2 Retain the notation and assumptions introduced above. The

family of Fano varieties F�

�

�

0

has ordinary codimension-three double points

along the surface S. The variety F

0

= Bl

S

(F �

�

�

0

) is smooth, and the

exceptional divisor E � F

0

0

is a smooth quadric surface bundle over S. The

component of F

0

0

dominating F

0

is isomorphic to S

[2]

.

The proof is essentially the same as the �rst lemma. Our nest result is:

Proposition 6.3.3 Retain the notation and assumptions introduced above.

Then there is a smooth family F ! �

0

, birational to F � �

0

, such that

F

u

= F

u

and F

0

= S

[2]

.
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We start with the family F

0

described in the previous lemma. The �bers

of E ! S are all smooth quadric surfaces, so the variety parametrizing

rulings of E is an �etale double cover of S. Since S has no nontrivial �etale

coverings we may choose a ruling of E. Blowing down E in the direction of

this ruling, we obtain a smooth family F . This map induces an isomorphism

from the proper transform of F

0

in F

0

0

to the central �ber of F . The proper

transform to F

0

in F

0

0

is isomorphic to S

[2]

, so F satis�es the conditions of

the proposition. �

We now prove Theorem 6.1.4. Let S be an algebraic K3 surface with

Picard group

P =

f

6

f

4

f

6

6 n + 5

f

4

n + 5 4

and n � 2. By Lemma 4.3.2, such a surface exists and we may assume that

jf

6

j imbeds it as a smooth sextic surface. The divisor f

4

is e�ective because it

has positive degree with respect to f

6

. We claim that f

4

is very ample. If f

4

were not ample, then there would exist a (�2)-curve E with f

4

E � 0. This

follows from the structure of the K�ahler cone of S ([16] x1,x10). Note that

f

4

E 6= 0 because P does not contain a rank-two sublattice of discriminant

�8. Recall that the Picard-Lefschetz re
ection associated to E is given by

the equation r

E

(x) = x + (E; x)E. Applying this to the class f

4

, we �nd

that r

E

(f

4

)

2

= 4 and (f

6

; r

E

(f

4

)) < (f

6

; f

4

). Hence that f

6

and r(f

4

) span

a sublattice with discriminant smaller than that of P , which is impossible.

Finally, applying Lemma 4.3.3 we see that the linear system jf

4

j imbeds S

as a smooth quartic surface.

Our hypothesis on P implies that the image of S under jf

6

j lies on a

smooth quadric hypersurface and does not contain a line, and that the image

of S under jf

4

j also does not contain a line. In particular, S corresponds to

a singular cubic fourfold X

0

2

~

C

6

. Furthermore S

[2]

is ambiguous, with an

involution j : S

[2]

! S

[2]

so that �

2

:= j

�

� = 2f

4

�3�: Using Proposition 6.3.3

and the arguments of x 4.3, X

0

has a smoothing � : X ! � such that (after

base change) the corresponding family of smooth symplectic varieties F ! �

0

is a deformation of S

[2]

for which �

2

remains algebraic. By Theorem 6.1.2

the Fano variety F

u

of X

0

u

is isomorphic to S

[2]

u

:

If we choose � generally, we may assume that the X

0

u

are typical and

that Pic(S

u

) is generated by the polarization f

0

. Let � = Pic(F

u

), a lattice

(with respect to the canonical form) of discriminant �2deg (S

u

): On the
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other hand, � is the saturation of Zg + Z�

2

. Specializing to S

[2]

we obtain

� = Z(2f

6

�3�)+Z(f

6

�f

4

) with discriminant �4(n

2

+n+1): In particular,

the S

u

have degree d(n) = 2(n

2

+n+1) and the X

u

are special of discriminant

d(n). �

We have shown that the pure limiting Hodge structures parametrized by

D

6

actually arise from smooth symplectic varieties. This may be interpret-

ted as a weak surjectivity result for the corresponding Torelli map. It also

explains the computation of the limiting mixed Hodge structure H

4

lim

in x 4.2.

There are a number of ways Theorem 6.1.4 might be generalized. We need

not assume that the polarizations f

6

and f

4

actually generate the Picard

lattice of S. Another approach is to replace

~

C

6

by some other divisor C

d

parametrizing special cubic fourfolds whose Fano varieties are of the form

S

[2]

. To make precise statements one requires explicit descriptions of two

complicated closed sets: the complement D

d

� C

d

and the locus in C

d

where

the isomorphism between the Fano varieties and the blown-up symmetric

squares breaks down. Finally, Mukai's philosophy suggests that whenever we

have an associated K3 surface S, the Fano variety F might be interpretted

as a suitable moduli space of simple sheaves on S. It would be interesting to

�nd such interpretations when F cannot be a blown-up symmetric square.
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