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Abstract
This paper is concerned with smooth cubic hypersurfaces of di-

mension four (cubic fourfolds) and the surfaces contained in them. A
cubic fourfold is special if it contains a surface which is not homologous
to a complete intersection. Special cubic fourfolds form a countably
infinite union of irreducible families Cd, where each Cd is a divisor
in the moduli space C of cubic fourfolds. For an infinite number of
these families, the Hodge structure on the nonspecial cohomology of
the cubic fourfold is essentially the Hodge structure on the primitive
cohomology of a K3 surface. We say that this K3 surface is associ-
ated to the special cubic fourfold. For any family Cd of special cubic
fourfolds possessing associated K3 surfaces, we discuss how Cd is re-
lated to the moduli space Nd of degree d K3 surfaces. In particular,
we prove that the moduli space of cubic fourfolds contains infinitely
many moduli spaces of polarized K3 surfaces as closed subvarieties. In
many cases, we construct a correspondence of rational curves on the
special cubic fourfold parametrized by the K3 surface, which induces
the isomorphism of Hodge structures. For infinitely many values of
d, the Fano variety of lines on the cubic fourfold is isomorphic to the
Hilbert scheme of length two subschemes of an associated K3 surface.
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1 Introduction

In this paper, we systematically study special cubic fourfolds using the tech-
niques of Hodge theory and classical algebraic geometry. In section two, we
review the Hodge theory of cubic fourfolds. In the third section, we prove
basic results about special cubic fourfolds and introduce the key concept of
the discriminant. Let X be a special cubic fourfold, h the hyperplane class
on X, and T the class of an algebraic surface in X not homologous to any
multiple of h2. The discriminant d is defined as the discriminant of the satu-
rated lattice spanned by h2 and T . Let Cd denote the special cubic fourfolds
of discriminant d (see § 3.2 for a precise definition). Our first main theorem
is

Theorem 1.0.1 (Classification of Special Cubic Fourfolds) (see The-
orems 3.2.3 and 4.3.1) Cd is an irreducible divisor in the moduli space of cubic
fourfolds and is nonempty iff d > 6 and d ≡ 0, 2(mod 6).

In the fourth section, we give concrete descriptions of special cubic four-
folds with small discriminants. Furthermore, we explain how some Hodge
structures at the boundary of the period domain arise from singular cubic
fourfolds.

In the fifth section, we turn to the connections between special cubic
fourfolds and K3 surfaces. The nonspecial cohomology of a special cubic
fourfold consists of the middle cohomology orthogonal to the distinguished
classes h2 and T . In many cases, this is essentially the primitive cohomology
of a K3 surface of degree d; we say that the K3 surface is associated to the
special cubic fourfold. Furthermore, the varieties Cd are often closely related
to moduli spaces of polarized K3 surfaces. Let Cmar

d denote the marked special
cubic fourfolds of discriminant d (see § 5.3 for the precise definition). This
is the normalization of Cd if d ≡ 2 (mod 6) and is a double cover of the
normalization otherwise. We prove the following theorem

Theorem 1.0.2 (Associated K3 Surfaces and Maps of Moduli Spaces)
(see Theorems 5.2.1 and 5.3.4) Special cubic fourfolds of discriminant d have
associated K3 surfaces iff d is not divisible by four, nine, or any odd prime
p ≡ −1(mod 3). In these cases, there is an open immersion of Cmar

d into the
moduli space of polarized K3 surfaces of degree d.
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In particular, an infinite number of moduli spaces of polarized K3 surfaces
may be realized as moduli spaces of special cubic fourfolds.

In the sixth section, we explain geometrically the existence of certain
associated K3 surfaces. By definition, the Fano variety of a cubic fourfold
X parametrizes the lines contained in X. For certain special cubic fourfolds
these Fano varieties are closely related to K3 surfaces:

Theorem 1.0.3 (Geometry of Fano Varieties) (see Theorem 6.1.5) As-
sume that d = 2(n2 +n+1) where n is an integer ≥ 2, and let X be a generic
special cubic fourfold of discriminant d. Then the Fano variety of X is iso-
morphic to the Hilbert scheme of length two subschemes of a K3 surface
associated to X.

More concretely, each line on the cubic fourfold corresponds to an unordered
pair of points, or a point and a tangent direction, on the K3 surface. We
should point out that the hypothesis on d is stronger than necessary, but
simplifies the proof considerably. Combining this with the results of section
five, we obtain examples of distinct K3 surfaces with isomorphic Hilbert
schemes of length two subschemes (Proposition 6.2.2.)

One motivation for this work is the rationality problem for cubic fourfolds:
Which cubic fourfolds are birational to P4? The Hodge structures on special
cubic fourfolds and their relevance to rationality questions have previously
been studied by Zarhin [Za]. Izadi [Iz] has also studied Hodge structures
on cubic hypersurfaces with a view toward rationality questions. All the
examples of cubic fourfolds known to be rational ([Fa] [Tr1] [BD] [Tr2]) are
special and have associated K3 surfaces. Indeed, a birational model of the
K3 surface is blown-up in the birational map from P4 to the cubic fourfold.
One wonders whether this is the case for all rational cubic fourfolds. In a
subsequent paper [Ha2], we shall apply the methods of this paper to give new
examples of rational cubic fourfolds. We show there is a countably infinite
union of divisors in C8 parametrizing rational cubic fourfolds (C8 corresponds
to the cubic fourfolds containing a plane).

Throughout this paper we work over C. We use the term ‘generic’ to mean
‘in the complement of some Zariski closed proper subset.’ The term ‘lattice’
will denote a free abelian group equipped with a nondegenerate symmetric
bilinear form.

I would like to acknowledge the help I received in the course of this
project. I benefitted from conversations with David Eisenbud and Elham
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Izadi, and from suggestions by Walter Baily and Robert Friedman. Barry
Mazur provided important insights and comments, and Johan de Jong made
many helpful observations and pointed out some errors in an early version of
this paper. Finally, Joe Harris introduced me to this beautiful subject; his
inspiration and advice have been invaluable.

2 Hodge Theory of Cubic Fourfolds

2.1 Cohomology and the Abel-Jacobi Map

Let X be a smooth cubic fourfold. The Hodge diamond of X has the form:

1
0 0

0 1 0
0 0 0 0

0 1 21 1 0

We shall focus on the middle cohomology of X, which contains all the non-
trivial Hodge theoretic information. We use L to denote the cohomology
group H4(X,Z) and L0 to denote the primitive cohomology H4(X,Z)0. The
intersection form on L (and L0) is a symmetric nondegenerate bilinear form
denoted 〈, 〉. We sometimes refer to L as the cohomology lattice and L0 as
the primitive cohomology lattice. If h is the hyperplane class on X then
h2 ∈ L and L0 is the orthogonal complement to h2.

Our best tool for understanding the middle cohomology of X is the Abel-
Jacobi mapping. Let F be the Fano variety of lines ofX, the subvariety of the
Grassmannian G(1, 5) parametrizing lines contained in X. This variety is a
smooth fourfold ([AK] §1). Let Z ⊂ F ×X be the ‘universal line’, the variety
of pairs (`, x) where x ∈ `; let p and q be the corresponding projections:

Z
p−−−→ F

q

y
X

The Abel-Jacobi map α is defined as the map of cohomology groups

α = p∗q
∗ : H4(X,Z) → H2(F,Z).
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Let M = H2(F,Z) and let g be the class of the hyperplane on F (induced
from the Grassmannian). Recall that α(h2) corresponds to the lines meeting
a codimension-two subspace of P5, so α(h2) = g. Let M0 ⊂ M be the
primitive cohomology of F . Following [B] and [BD], we define a symmetric
bilinear form (, ) on M as follows. We assume that g and M0 are orthogonal
with respect to this form, and we set (g, g) = 6 and (x, y) = 1

6
g2xy for

x, y ∈ M0. Extending by linearity we obtain an integral form on all of M ,
which we shall call the Beauville canonical form. Beauville and Donagi prove
that α preserves the bilinear forms on primitive cohomology:

Proposition 2.1.1 ([BD] Prop. 6) The Abel-Jacobi map induces an isomor-
phism between L0 and M0; moreover, for x, y ∈ L0 we have (α(x), α(y)) =
−〈x, y〉.

Indeed, we may interpret α is an isomorphism of Hodge structures

α : H4(X,C)0 → H2(F,C)0(−1).

The −1 means that the weight is shifted by two; this reverses the sign of the
intersection form.

We apply this to compute explicitly the middle cohomology of the cubic
fourfold.

Proposition 2.1.2 The middle integral cohomology lattice of a cubic four-
fold is

L ∼= (+1)⊕21 ⊕ (−1)⊕2

i.e. the intersection form is diagonalizable over Z with entries ±1 along the
diagonal. The primitive cohomology is

L0 ∼=
(

2 1
1 2

)
⊕H ⊕H ⊕ E8 ⊕ E8

where H =

(
0 1
1 0

)
is the hyperbolic plane and E8 is the positive definite

quadratic form associated to the corresponding Dynkin diagram.

We shall sometimes use the shorthand

B =

(
2 1
1 2

)
.
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We first prove the statement on the full cohomology. The bilinear form
on L is unimodular by Poincaré duality. By the Riemann bilinear relations,
we know that the signature of L is equal to (21, 2). The class h2 ∈ L has self
intersection 〈h2, h2〉 = h4 = 3, so the lattice L is odd. Using the theory of
indefinite quadratic forms (e.g. [Se]) we conclude the result.

Now we turn to the primitive cohomology L0. This lattice is not unimod-
ular so it is harder to understand. Using the Abel-Jacobi map, we know it
is the same (up to sign) as the primitive cohomology lattice M0 of the Fano
variety. We first compute the lattice M , then the lattice M0.

In [BD] Prop. 6, it is shown that F is a deformation of a variety S[2],
where S is a degree fourteen K3 surface. Note that S[2] denotes the Hilbert
scheme of length two zero-dimensional subschemes of S; this is sometimes
called the blown-up symmetric square of S. Using the results of [B], we have
the canonical orthogonal decomposition

H2(S[2],Z) = H2(S,Z)⊕⊥ Zδ

where δ2 = −2 and the restriction of (, ) to H2(S,Z) is the intersection
form. Geometrically, the divisor 2δ corresponds to the nonreduced length
two subschemes of S. The cohomology lattice of a K3 surface is well-known
(cf. [LP] Prop. 1.2)

H2(S,Z) ∼= Λ := H⊕3 ⊕ (−E8)
⊕2.

We conclude that
M ∼= H⊕3 ⊕ (−E8)

⊕2 ⊕ (−2).

To compute the lattice M0, we must first identify the polarization class
g. Following [BD], we obtain that

g = 2f − 5δ

where f ∈ H2(S,Z) satisfies (f, f) = 14. Let v1 and w1 be a basis for the
first summand H, such that (v1, v1) = (w1, w1) = 0 and (v1, w1) = 1. The
automorphisms ofH2(S,Z) act transitively on the primitive vectors of a given
nonzero length ([LP] Theorem 2.4). Hence after applying an automorphism
of H2(S,Z), we may assume that f = v1 + 7w1 and g = 2v1 + 14w1 − 5δ.
We use v1 + 3w1− 2δ and δ− 5w1 as the first two elements of a basis of M0.
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Including the other summands, we obtain

M0 ∼=
(
−2 −1
−1 −2

)
⊕H⊕2 ⊕ (−E8)

⊕2.

Since L0 = −M0, this completes the proof. �
Remark: Note that our computation shows that the lattice L0 is even.

2.2 Hodge Theory and the Torelli Map

We review Hodge theory in the context of cubic fourfolds; a general introduc-
tion to Hodge theory is [GrS]. Recall that a complete marking of a polarized
cubic fourfold is an isomorphism

φ : H4(X,Z) → L

mapping the square of the hyperplane class to h2 ∈ L. If we are given
a complete marking φ, we may identify H4(X,C)0 with L0

C = L0 ⊗Z C.
The complex structure on X determines a distinguished subspace F 3(X) =
H3,1(X,C) ⊂ L0

C satisfying the following properties:

1. F 3(X) is isotropic with respect to the intersection form <,>.

2. The Hermitian form H(u, v) = −〈u, v̄〉 on F 3(X) is positive.

Let Q ⊂ P(L0
C) be the quadric hypersurface defined by the intersection form,

and let U ⊂ Q be the topologically open subset where the positivity condition
holds. The open manifold U is a homogeneous space for the real Lie group
SO(L0

R) = SO(20, 2). This group has two components; one of them reverses
the orientation on the negative definite part of L0

R. Note that the negative

definite part of L0
R coincides with (F 3 ⊕ F

3
) ∩ L0

R; changing the orientation

corresponds to exchanging F 3 and F
3

(see §6 of the appendix to [Sa] for de-
tails). Hence the two connected components of U parametrize the subspaces

F 3 and F
3

= H1,3(X) respectively; we denote them D′ and D′. The com-
ponent D′ is a twenty-dimensional open complex manifold, called the local
period domain for cubic fourfolds with complete marking. It is a classifying
space for the polarized Hodge structures arising from these manifolds.

Let Γ denote the group of automorphisms of L preserving the intersection
form and the distinguished class h2. We let Γ+ ⊂ Γ denote the subgroup
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stabilizing D′. This is the index-two subgroup of Γ which preserves the
orientation on the negative definite part of L0

R. Γ+ acts holomorphically on
D′ from the left; for a point in D′ corresponding to the marked cubic fourfold
(X,φ) the action is γ(X,φ) = (X, γ ◦ φ). The orbit space D = Γ+\D′ exists
as an analytic space and is called the global period domain. Indeed, we have
the following result:

Proposition 2.2.1 The global period domain D for cubic fourfolds is a
quasi-projective variety of dimension twenty.

In §6 of the appendix to [Sa], it is shown that the manifold D′ is a bounded
symmetric domain of type IV. The group Γ+ is arithmetically defined and acts
holomorphically on D′. In this situation we may introduce the Borel-Baily
compactification ([BB] §10): there exists a compactification of D′, compatible
with the action of Γ+, so that the quotient is projective. Moreover, D =
Γ+\D′ is a Zariski open subvariety of this quotient. �

Let C denote the coarse moduli space for smooth cubic fourfolds. We
digress to explain the construction of C. The smooth cubic fourfolds form a
Zariski open subset V of the projective space P55 of all cubic fourfolds. Two
cubic fourfolds are isomorphic if and only if they are congruent under the
action of SL6. Using the results of [MFK] ch.4 §2, we see that the smooth
cubic fourfolds are properly stable in the sense of Geometric Invariant Theory.
Consequently, the quotient C := V// SL6 exists as a quasi-projective variety
and is a coarse moduli space for cubic fourfolds ([MFK] ch.1 §4). Counting
parameters, we see that C has dimension twenty.

Each cubic fourfold determines a point in D, and the corresponding map

τ : C −→ D

is called the period map. By general results of Hodge theory, this is a holo-
morphic map of twenty-dimensional analytic spaces. For cubic fourfolds, we
can say much more. First of all, we have the following result due to Voisin:

Theorem 2.2.2 (Torelli Theorem for Cubic Fourfolds[V]) The period map
for cubic fourfolds τ : C → D is an open immersion of analytic spaces.

In particular, if X1 and X2 are cubic fourfolds and there exists an isomor-
phism of Hodge structures ψ : H4(X1,C) → H4(X2,C), then X1 and X2 are
isomorphic.
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Using the fact that D is the quotient of a bounded symmetric domain,
we prove the following further result:

Proposition 2.2.3 The period map for cubic fourfolds τ : C → D is an
algebraic map.

To prove the claim, we use the following consequence of A. Borel’s extension
theorem [Bo]:

Let D′ be a bounded symmetric domain, and G an arithmetically defined
torsion-free group of automorphisms. Let D = G\D′ be the quasi-projective
quotient space, and Z an algebraic variety. Then any holomorphic map Z →
D is algebraically defined.

We would like to apply this for D = D, G = Γ+, and Z = C. Unfortunately,
the group Γ+ is not torsion-free. However, Γ+ contains a normal subgroup
H of finite index that is torsion-free ([Sa] IV Lemma 7.2). Let Γ+(N) denote
the subgroup of Γ+ acting trivially on L/NL. For some large N , Γ+/H acts
faithfully on L/NL so Γ+(N) ⊂ H and is torsion-free. Let C(N) denote the
moduli space of cubic fourfolds with marked Z/NZ cohomology, i.e. cubic
fourfolds along with an isomorphism

φn : H4(X,Z)⊗Z (Z/NZ) → L/NL

preserving h2. This is a finite (and perhaps disconnected) cover of C; we
use C0(N) to denote a connected component. This cover is ramified only
over cubic fourfolds X possessing an automorphism which acts trivially on
H4(X,Z/NZ). Let D(N) be the corresponding global period domain, the
quotient Γ+(N)\D′; this is also finite over D. The period map lifts to a map

τN : C0(N) → D(N).

We may apply Borel’s theorem to conclude τN is an algebraic map. By a
descent argument it follows that τ itself is algebraic. This completes the
proof of the proposition. �

We also obtain the following useful corollary:

Corollary 2.2.4 The moduli space C of cubic fourfolds is a Zariski open
subset of the global period domain D. In particular, the complement to C in
D is defined by algebraic equations.
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3 Special Cubic Fourfolds

3.1 Basic Definitions

Definition 3.1.1 A cubic fourfold X is special if it contains an algebraic
surface T which is not homologous to a complete intersection.

Let X be a cubic fourfold and let A(X) denote the lattice H2,2(X) ∩
H4(X,Z). This lattice is positive definite by the Riemann bilinear relations.
The Hodge conjecture is true for cubic fourfolds [Zu], so A(X) is generated
(over Q) by the classes of algebraic cycles and is called the saturated lattice of
algebraic classes. X is special if and only if the rank of A(X) is at least two.
Equivalently, X is special if and only if A(X)0 := A(X) ∩H4(X,Z)0 6= 0.

Definition 3.1.2 Let (K, 〈, 〉) be a positive definite rank-two lattice contain-
ing a distinguished element h2 with 〈h2, h2〉 = 3. A marked special cubic
fourfold is a special cubic fourfold X with the data of a primitive imbedding
of lattices K ↪→ A(X) preserving the class h2. A labelled special cubic four-
fold is a special cubic fourfold with the data of the image of a marking, i.e. a
saturated rank-two lattice of algebraic classes containing h2. A special cubic
fourfold is typical if it has a unique labelling.

We now describe the structure of special cubic fourfolds and prove that
‘most’ cubic fourfolds are not special. Actually, we shall prove a much more
precise statement which may be found at the end of the proof.

Proposition 3.1.3 The special cubic fourfolds form a countably infinite union
of irreducible divisors in C.

To prove this, we need to translate the definition of ‘special’ into Hodge
theory and use the properties of the period domain and the Torelli map.
The lattice A(X) is equal to H4(X,Z) ∩ (H3,1 ⊕ H1,3)⊥. An integral class

orthogonal to H3,1 is automatically orthogonal to H1,3 = H
3,1

. Hence A(X)
is equal to H4(X,Z) ∩ H3,1(X)⊥ = L ∩ (F 3)⊥. In particular, X is special
if and only if the rank of L ∩ F 3(X)⊥ is at least two (or if L0 ∩ F 3(X)⊥ is
nonzero).

We now characterize the points x ∈ D′ corresponding to special cubic
fourfolds. We say that such a Hodge structure is special if L0 ∩ F 3(x)⊥ is

10



nonzero. Let K be a rank-two positive definite saturated sublattice of L
containing the class h2 and write K0 = K ∩ L0. The set of such sublattices
form a countably infinite set. Recall that D′ is an open subset of a quadric
hypersurface in P(L0). Let D′

K be the x ∈ D′ such that K0 ⊂ x⊥; this is a
hyperplane section of D′. Each special Hodge structure in D′ is contained in
some D′

K , so the special Hodge structures form a countably infinite union of
divisors in D′.

We now consider the geometry of the divisors D′
K in more detail. Let K⊥

denote the orthogonal complement to K in L. We see that D′
K is a topo-

logically open subset of a quadric hypersurface in P(K⊥
C ) and has dimension

nineteen. We may think of this manifold as a classifying space for Hodge
structures on the lattice K⊥. As in the previous section, we can prove that
D′
K is a bounded symmetric domain of type IV (see §6 of the appendix to

[Sa]). Let Γ+
K denote the subgroup of Γ+ stabilizing K, i.e. γ ∈ Γ+ such

that γ(K) ⊂ K. This group is arithmetic and acts holomorphically on D′
K .

Again we may use the Borel-Baily compactification [BB] to show that the
quotient Γ+

K\D′
K is quasi-projective. Furthermore, the induced holomorphic

map Γ+
K\D′

K → Γ+\D′ = D is algebraically defined, so Γ+
K\D′

K is mapped
to an irreducible algebraic divisor in the global period domain.

We enumerate the corresponding divisors of special cubic fourfolds in the
global period domain. Of course, each of these corresponds to Γ+

K\D′
K for

some K ⊂ L as above, but this K is not uniquely determined. Two such
latticesK1 andK2 give rise to the same divisor in D if and only ifK1 = γ(K2)
for some γ ∈ Γ+. In other words, the stabilizing subgroups Γ+

K1
and Γ+

K2
must

be conjugate in Γ+. We use [K] to denote the orbit of K under the action
of Γ+. We let D[K] denote the corresponding irreducible divisor in D.

We now complete the proof of the proposition. From the previous results
on the Torelli map, we may regard C as a Zariski open subset of the period
domain D. By the Hodge conjecture, the locus of special cubic fourfolds cor-
responds to the intersection of this open set with the divisors D[K]. However,
since C is Zariski open in D, we have that C[K] = C ∩ D[K] is an irreducible
(possibly empty) algebraic divisor in C. Hence the special cubic fourfolds are
a countable union of divisors in C. �

We have actually proved the following more precise statement:

Theorem 3.1.4 (Structure of Special Cubic Fourfolds) Let K ⊂ L be
a positive definite rank-two saturated sublattice containing h2 and let [K]
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be the Γ+ orbit of K. Let C[K] be the special cubic fourfolds X such that
A(X) ⊃ K ′ for some K ′ ∈ [K]. Then C[K] is an irreducible (possibly empty)
algebraic divisor of C. Every special cubic fourfold is contained in some such
C[K].

Remark: We shall use Dlab
[K] to denote Hodge structures x ∈ D′ with K ⊂

H2,2(x)∩L, modulo elements of Γ+
K . This is called the labelled special Hodge

structures of type [K] and coincides with the quotient Γ+
K\D′

K . In particular,
Dlab

[K] is a normal quasi-projective variety of dimension nineteen [BB]. The

morphism Dlab
[K] → D maps Dlab

[K] birationally onto D[K]; a general point in

D[K] has a unique labelling. Indeed, Dlab
[K] is the normalization of D[K]. The

fiber product Dlab
[K]×DC will be called the moduli space of labelled special cubic

fourfolds of type [K], denoted Clab
[K]. The points of this variety correspond to

special cubic fourfolds with the data of a rank-two saturated sublattice of
A(X) congruent to K.

3.2 Discriminants and Special Cubic Fourfolds

We now refine the classification worked out in the previous section by working
out the orbits of the rank-two sublattices K ⊂ L under the action of Γ+. The
following definition is the key to this computation:

Definition 3.2.1 Let (X,K) be a labelled special cubic fourfold. The dis-
criminant of the pair (X,K) is the determinant of the intersection matrix of
K.

Proposition 3.2.2 Let (X,K) be a labelled special cubic fourfold of discrim-
inant d and let v be a generator of K0 = K ∩ L0.

1. d > 0 and d ≡ 0,−1 (mod 3)

2. d′ := 〈v, v〉 =

{
3d if d ≡ −1 (mod 3)
d
3

if d ≡ 0 (mod 3)

3. 〈v, L0〉 =

{
3Z if d ≡ −1 (mod 3)

Z if d ≡ 0 (mod 3)
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4. d is even

In particular, d > 0 and d ≡ 0, 2(mod 6).

The discriminant is positive because K is positive definite. Choose a class
T ∈ K so that h2 and T generate K over Z. We have the formulas

d =
〈
h2, h2

〉
〈T, T 〉 −

〈
h2, T

〉2

= 3 〈T, T 〉 −
〈
h2, T

〉2

≡ −
〈
h2, T

〉2
(mod 3) .

This implies that −d is a square modulo three, so d is congruent to 0 or −1
modulo three.

For the second statement, we treat the two cases separately. If d is a
multiple of three then 〈h2, T 〉 is also a multiple of three. In this case, we may
write the generator of K0 as

v =
1

3

〈
h2, T

〉
h2 − T

so 〈v, v〉 = −1
3
〈h2, T 〉2 + 〈T, T 〉 = d

3
. If d is congruent to −1 modulo three

then we may write
v =

〈
h2, T

〉
h2 − 3T

so 〈v, v〉 = −3 〈h2, T 〉2 + 9 〈T, T 〉 = 3d.
Now we turn to the third statement. For every primitive element v ∈ L0

we have 〈v, L0〉 = Z or 3Z. This is because the discriminant group d(L0) is
isomorphic to Z/3Z (this terminology is explained in an addendum to this
section). Moreover, 〈v, L0〉 = 3Z if and only if the sublattice spanned by h2

and v is not saturated. From the calculations above, if d is divisible by three
then the sublattice spanned by h2 and v is K, which is saturated. On the
other hand, if d ≡ −1 (mod 3) then the span of h2 and v is equal to the span
of h2 and 3T , which cannot be saturated.

Now we prove the last statement. We have computed the lattice L0 and
found it is even (Proposition 2.1.2.) Consequently, 〈v, v〉 is even and so d is
also even. �

The main result of this section is:
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Theorem 3.2.3 (Irreducibility Theorem) The special cubic fourfolds pos-
sessing a labelling of discriminant d form an irreducible (possibly empty)
algebraic divisor Cd ⊂ C.

In Theorem 4.3.1 we determine which Cd are nonempty. The elements of
Cd are sometimes called the special cubic fourfolds of discriminant d. The
corresponding rank-two lattice of discriminant d is denoted Kd. We write Dd

for D[Kd], Dlab
d for Dlab

[Kd], Cd for C[Kd], and Clab
d for Clab

[Kd].
The proof of the Irreducibility Theorem hinges on Theorem 3.1.4, which

reduces it to a computation with lattices. Let K and K ′ be saturated rank-
two sublattices of L containing h2. When are K and K ′ in the same orbit
under the action of Γ+? Clearly it is necessary that K ′ and K ′ have the same
discriminant. We shall prove this is also a sufficient condition:

Proposition 3.2.4 Let K and K ′ be saturated rank-two nondegenerate sub-
lattices of L containing h2. Then K = γ(K ′) for some γ ∈ Γ+ if and only if
K and K ′ have the same discriminant.

To establish the proposition we prove a more precise result. By Proposi-
tion 2.1.2

L0 ∼=
(

2 1
1 2

)
⊕H ⊕H ⊕ E8 ⊕ E8

= B ⊕H ⊕H ⊕ E8 ⊕ E8.

Let a and b be generators for B and v1, w1, v2, w2 generators for the hyperbolic
planes so that

〈a, a〉 = 〈b, b〉 = 2 〈a, b〉 = 1 〈vi, vi〉 = 〈wi, wi〉 = 0 〈vi, wi〉 = 1

where i = 1, 2.

Proposition 3.2.5 (Structure of Γ+\L0) Every primitive element v ∈ L0

with 〈v, v〉 6= 0 is congruent under the action of Γ+ to one of the following:

1. v1 + nw1 with n 6= 0

2. ±(a+ b) + 3(v1 + nw1)
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We first show how Proposition 3.2.4 follows from this. Let K and K ′ be lat-
tices of the same discriminant satisfying the hypotheses of Proposition 3.2.4;
let v and v′ be generators of K0 and (K ′)0. These elements are both con-
gruent (up to sign) to some element of the list above. Indeed, the ele-
ments v1 +nw1 correspond to discriminants d ≡ 0 (mod 6) and the elements
±(a + b) + 3(v1 + nw1) correspond to discriminants d ≡ 2 (mod 6). Hence
there exists some γ ∈ Γ+ such that v = ±γ(v′) and K = γ(K ′).

We claim that if the proposition holds for the group Γ then it also holds for
the subgroup Γ+. To prove this, it suffices to find some g ∈ Γ\Γ+ stabilizing
all the elements of our list. Take g to be the identity except on the second
hyperbolic plane in the orthogonal decomposition for L0; on this component
set g equal to multiplication by −1.

We should point out that the elements a+b and−(a+b) are not equivalent
under the action of Γ. The elements of Γ fix h2, so they act trivially on the
discriminant group d(Zh2). Since L0 is the orthogonal complement of Zh2 we
have a canonical isomorphism d(Zh2) = d(L0) [Ni] §1.5. Hence the elements
of Γ act trivially on d(L0). However, 1

3
(a+b) and −1

3
(a+b) yield two distinct

elements of d(L0) ∼= Z/3Z, so they cannot be exchanged by elements of Γ.
Note that any automorphism of L0 that acts trivially on d(L0) extends to
give an element of Γ [Ni] 1.5.1, so we may identify Γ with the group of such
automorphisms of L0.

Let K0 denote the rank-one lattice generated by an element v satisfying
〈v, v〉 = d′. Let qK0 denote the quadratic form on d(K0) and let q denote the
quadratic form on d(L0). The lattice L0 is the unique even lattice of signature
(20, 2) with discriminant quadratic form q [Ni] 1.14.3. Furthemore, any sat-
urated codimension-one sublattice K⊥ ⊂ L0 is the orthogonal complement
of a rank-two sublattice K ⊂ L. Hence there is a canonical isomorphism
of discriminant groups d(K⊥) = d(K), and the discriminant group of K⊥ is
generated by at most two elements. This implies the isomorphism class of
K⊥ is determined by its signature and discriminant form, and any isomor-
phism of d(K⊥) preserving the discriminant quadratic form is induced by an
automorphism of K⊥ [Ni] 1.14.3.

Our goal is to classify the primitive imbeddings of K0 into L0, up to
automorphisms of L0 acting trivially on d(L0). Two imbeddings differing
only by such an automorphism are said to be congruent. Applying the results
of [Ni] §1.15 in our situation, we obtain a characterization of the congruence
classes of primitive imbeddings of i : K0 → L0:
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Primitive imbeddings i : K0 → L0 correspond to the following data:
1)A subgroup Hq ⊂ d(L0).
2)A subgroup HK0 ⊂ d(K0).
3)An isomorphism φ : HK0 → Hq preserving the restrictions of the quadratic
forms to these subgroups, with graph Γφ = {(h, φ(h)) : h ∈ HK0} ⊂ d(K0)⊕
d(L0).
4)An even lattice K⊥ with complementary signature and discriminant form
qK⊥, and an isomorphism φK⊥ : qK⊥ → −δ, where δ = ((qK0 ⊕ −q)|Γ⊥φ )/Γφ
(and Γ⊥φ is the orthogonal complement to Γφ with respect to qK0 ⊕ q).

Consider another imbedding with data (H ′
q, H

′
K0 , φ′, (K ′)⊥, φ(K′)⊥). These two

imbeddings are congruent if and only if HK0 = H ′
K0 and φ = φ′.

Our proof now divides into cases.

Case I: Hq = {0}
This condition is equivalent to stipulating that 〈i(K0), L0)〉 = Z. Using the
characterization above, we see that under these conditions all imbeddings of
K0 are congruent. In particular, any primitive v ∈ L0 with 〈v, L0〉 = Z is
congruent to v1 + d′

2
w1.

Case II: Hq = d(L0) ∼= Z/3Z
This is equivalent to stipulating that 〈i(K0), L0)〉 = 3Z. In this case, d(K0)
has a subgroup HK0 of order three and 3|d′. There are two possible isomor-
phisms between d(L0) and HK0 , thus two classes of imbeddings of K0 into
L0. In particular, any primitive v ∈ L0 with 〈v, L0〉 = 3Z is congruent to
±(a+ b) + 3(v1 + nw1). �

At this point, it is convenient to compute the discriminant quadratic
forms of the lattices K⊥

d , the orthogonal complements to Kd in L.

Proposition 3.2.6 If d ≡ 0 (mod 6) then d(K⊥
d ) ∼= Z/d

3
Z⊕Z/3Z, which is

cyclic unless nine divides d. Furthermore, we may choose this isomorphism
so that qK⊥

d
(0, 1) = 2

3
(mod 2Z) and qK⊥

d
(1, 0) = −3

d
(mod 2Z).

If d ≡ 2 (mod 6) then d(K⊥
d ) ∼= Z/dZ. Furthermore, we may choose a

generator u so that qK⊥
d
(u) = 2d−1

3d
(mod 2Z).

We retain the notation used in the previous proof so in particular K0 ∼= K0
d .

First, d(L0) ∼= Z/3Z and q takes the value 2
3

(mod 2Z) on any generator. By
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Proposition 3.2.2, d(K0
d) ≡ Z v

d′
/Zv ∼= Z/d′Z where

d′ =

{
3d if d ≡ 2 (mod 6)
d
3

if d ≡ 0 (mod 6)
;

the quadratic form qK0
d

takes the value 1
d′

(mod 2Z) on the generator.
The first part of the proposition corresponds to the first case of the pre-

vious proof. In particular, d = 3d′ and Γφ is trivial. Applying the character-
ization of imbeddings cited above, we find that d(K⊥

d ) = d(K0
d) ⊕ d(L0) ∼=

Z/d′Z ⊕ Z/3Z. By the Chinese remainder theorem, this is cyclic of order
d unless d′ is divisible by three. Furthermore, qK⊥

d
= −qK0

d
⊕ q so we may

compute the values given above.
The second part of the proposition corresponds to the case where Hq =

d(L0) ∼= Z/3Z, so in particular d′ = 3d. We identify d(K0
d)⊕d(L0) ∼= Z/d′Z⊕

Z/3Z so that Γφ is generated by (d
′

3
, 1). We then have that Γ⊥φ is generated

by u = (1,−1) and so d(K⊥
d ) = Γ⊥φ /Γφ

∼= Z/d′
3
Z. Since qK⊥

d
= −qK0

d
⊕ q we

find that qK⊥
d
(u) = 2

3
− 1

d′
= 2d−1

3d
(mod 2Z). �

Addendum: Discriminant Groups
Here we give an informal introduction to discriminant forms, to acquaint

the reader with the basic ideas and notation. See [Ni] or [Do] for more details
and proofs. The precise results we use are stated as they are applied.

Let L be a lattice with bilinear form 〈, 〉. We use L∗ to denote the group
Hom(L,Z). Assume L is nondegenerate, so the bilinear form 〈, 〉 induces an
inclusion i : L ↪→ L∗. By definition, L is unimodular if and only if i is an
isomorphism. More generally the cokernel of i is a finite abelian group, called
the discriminant group of L and denoted d(L).

The discriminant group d(L) comes with some additional structure. The
bilinear form 〈, 〉 extends by linearity to a Q-valued bilinear form on L∗. Let
bL be the reduction of the bilinear form modulo Z, i.e. bL ≡ 〈, 〉 (mod Z).
Then L is isotropic for bL and bL gives a well defined Q/Z-valued bilinear
form on d(L). Now assume further that L is even and let qL be the reduction
of the quadratic form modulo 2Z. Again L is isotropic for qL and so qL gives
a well-defined Q/2Z-valued quadratic form on d(L), called the discriminant
quadratic form.
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4 Examples

4.1 Special Cubic Fourfolds with Small Discriminants

In this subsection, we give some examples of special cubic fourfolds. Specifi-
cally, for small values of d we describe surfaces contained in a general cubic
fourfold of Cd. In general, it is hard to prove that the closure of the cubic
fourfolds containing a given type of surface form a divisor; the d = 12 case
indicates some of the difficulties which arise.

First, we make some preliminary computations with Chern classes. Let
X be a cubic fourfold containing a surface T and assume

Kd = Zh2 + ZT.

To compute the discriminant d in practice, we must first compute the self-
intersection 〈T, T 〉 on X. We interpret 〈T, T 〉 as c2(NT/X), the highest Chern
class of the normal bundle to T inX. Letting h = h|T we find that ct(TX |T ) =
1 + 3ht+ 6h2t2 and

ct(TT ) = 1−KT t+ χT t
2

where χT denotes the topological Euler characteristic of T . Using the exact
sequence

0 → TT → TX |T → NT/X → 0

we conclude that

〈T, T 〉 = c2(NT/X) = 6h2 + 3hKT +K2
T − χT .

4.1.1 d=8: Cubic Fourfolds Containing a Plane

Let X be a smooth cubic fourfold containing the plane P . These cubic
fourfolds are used by Voisin in her proof of the Torelli theorem [V]. By the
results of the previous paragraph 〈P, P 〉 = 3 and X is special with marking

K8 =
h2 P

h2 3 1
P 1 3

which has discriminant eight. In fact, every cubic fourfold in C8 (cf. Theo-
rem 3.2.3) contains a plane [V] §3. The cubic fourfolds in C8 contain many
other familiar surfaces:
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1. Quadric surfaces: the intersection of X with two hyperplanes contain-
ing P consists of the union of P and a quadric surface Q.

2. Quartic del Pezzo surfaces: the intersection of X with a quadric three-
fold containing Q consists of the union of Q and a quartic del Pezzo
surface W .

3. Octic K3 Surfaces

One can continue in this way to obtain many different surfaces linked to the
plane P .

4.1.2 d=12: Cubic Fourfolds Containing a Cubic Scroll

Let X be a smooth cubic fourfold containing a rational normal cubic scroll
T . We have 〈T, T 〉 = 7 and X is special with marking

K12 =
h2 T

h2 3 3
T 3 7

which has discriminant twelve.

Lemma 4.1.1 Let X be a general cubic fourfold containing a rational nor-
mal cubic scroll T . Then the scrolls in X rationally equivalent to T form a
two parameter family.

First, we construct a two parameter family of cubic scrolls rationally equiv-
alent to T in X. Let H ⊂ X denote the hyperplane section containing T .
The ideal of T in P4 is generated by a net of quadrics. If Q is one of these
quadrics then

Q ∩H = T ∪ T ′

where T ′ is residual to T . For general Q, T ′ is again a cubic scroll cut out
by a net of quadrics Q′

s. For each s ∈ P2, we have

Q′
s ∩H = T ′ ∪ Ts

where Ts is a cubic scroll rationally equivalent to T in X. This gives a two
parameter family of deformations of T , all of which are contained in H.
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We prove that all deformations of T are of this form. If T̃ is an arbitrary
deformation of T then T̃ ∩ T ′ = −1, so T ′ and T̃ meet in a nondegenerate
curve C ⊂ H. Since T̃ must also be a cubic scroll, we conclude that T̃ is
contained in H. We claim that the scrolls contained in H form a union of
two parameter families. This is because the equation of a cubic threefold
containing a cubic scroll is the determinant of a 3 × 3 matrix. Such an
equation generally has six double points (where the matrix has rank one),
and a general cubic threefold with six double points can be represented in
this way. The Hilbert scheme of cubic scrolls in P4 has dimension 18, and
each scroll is contained in a twelve-dimensional system of cubic threefolds.
However, the locus of cubic threefolds with six double points has dimension
28, so generally such a cubic threefold contains a two parameter family of
cubic scrolls. This proves the claim and the lemma. �

Now we count the dimension of the cubic fourfolds containing cubic
scrolls. Consider pairs of scrolls and cubic fourfolds containing them

W = {(X,T ) : T ⊂ X}.

The Hilbert scheme of cubic scrolls in P5 is irreducible of dimension 5 +
24 − 6 = 23. Any given scroll is contained in a projective space of cubic
hypersurfaces of dimension 55 − 22 = 33, so W is irreducible of dimension
56. However, each cubic fourfold containing a cubic scroll contains a two
parameter family of such scrolls, so the cubic fourfolds containing a cubic
scroll form a divisor in C. This coincides with C12.

4.1.3 d=14: Cubic Fourfolds Containing a Quartic Scroll/Pfaffian
Cubic Fourfolds

These have been extensively studied by many people, including Fano [Fa],
Morin [Mo], Tregub [Tr1], and Beauville-Donagi [BD]. The degenerate case
of cubic fourfolds containing two disjoint planes is discussed in § 6.1.

Let X be a cubic fourfold containing a rational normal quartic scroll T .
We have 〈T, T 〉 = 10 so our marking is

K14 =
h2 T

h2 3 4
T 4 10
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which has discriminant fourteen. We show that X also contains quintic del
Pezzo surfaces and quintic rational scrolls. Let Σ = P1 × P2 ⊂ P5 denote a
Segre threefold; this is imbedded by the line bundle OP1×P2(1, 1). Divisors
of type (1, 2) in Σ are generally quintic del Pezzo surfaces and divisors of
type (3, 1) are quintic rational normal scrolls. Furthermore, divisors of type
(2, 1) and (0, 2) are quartic rational normal scrolls. Hence there exist Segre
threefolds Σ1,Σ2 ⊃ T such that

Σ1 ∩X = T ∪W a quintic del Pezzo surface

Σ2 ∩X = T ∪ T5 a quintic rational scroll

One can show that the quartic scrolls, quintic scrolls, and quintic del Pezzos
on X generally form families of dimensions two, two, and five respectively.
A dimension count shows that the cubic fourfolds containing any of these
surfaces forms a divisor C14 ⊂ C. (Note that Morin uses a spurious parame-
ter count to conclude that the quartic scrolls form a one-dimensional family.
From this, he concludes incorrectly that every cubic fourfold contains a quar-
tic scroll.)

We should point out another description of an open subset of C14: the
Pfaffian cubic fourfolds constructed by Beauville and Donagi [BD]. The
dimension counts in the last paragraph follow from their results. Beauville
and Donagi also show that the Pfaffian cubic fourfolds are rational. From
our point of view this is not hard to see. Let W ⊂ X be a quintic del Pezzo
surface and consider the linear system of quadric hypersurfaces containing
W . This linear system induces a birational morphism f : BlW (X) → P4.
The inverse f−1 is obtained by the linear system of quartics passing though
a degree-nine surface S̃ ⊂ P4. The surface S̃ is the projection of a degree-
fourteen K3 from five collinear points.

4.1.4 d=20: Cubic Fourfolds Containing a Veronese

Let X contain a Veronese surface V , which is isomorphic to P2 imbedded by
the line bundle OP2(+2). We have that 〈V, V 〉 = 12 so the marking is

K20 =
h2 V

h2 3 4
V 4 12
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which has discriminant twenty. A general cubic fourfold containing a Veronese
contains only one Veronese, so a dimension count implies that the cubic four-
folds containing a Veronese form a divisor in C. This is the divisor C20.

4.2 d=6: Cubic Fourfolds with an Ordinary Double
Point

A double point is ordinary if its projectivized tangent cone is a smooth
quadric. Cubic hypersurfaces in P5 with an ordinary double point are stable
in the sense of Geometric Invariant Theory. This is proved using Mumford’s
numerical criterion for stability (cf [MFK] §2.1) and the methods of ([MFK]
§4.2). We conclude there exists a quasi-projective variety parametrizing cu-
bic fourfolds with (at worst) a single ordinary double point. This is denoted
C̃ ⊃ C.

Let X0 be a cubic fourfold with a single ordinary double point p. Then
projection from the point p gives a birational map

πp : X0 99K P4.

This map can be factored

X0 = BlS(P4)
q1−−−→ X0

q2

y
P4

The map q1 is the blow-up of the double point p and q2 is the blow-down of
the lines contained in X0 passing through p. These lines are parametrized
by a surface S, which we describe explicitly. Choose coordinates x1, . . . , x5

so that p = (0, 0, 0, 0, 0). Then the equation for X0 takes the form

f = f2(x1, . . . , x5) + f3(x1, . . . , x5) = 0

where f2 and f3 are homogeneous of degrees two and three. Note that f2 is
nonsingular because p is ordinary. The lines through p correspond to points
of the complete intersection f2 = f3 = 0 in P4. This complete intersection
must be smooth, because p is the only singularity of X0.

We see that the lines through the double point p are parametrized by the
smooth complete intersection of a smooth quadric and a cubic in P4. This
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surface is a sextic K3 surface. The inverse map π−1
p is given by the linear

system of cubic polynomials through this K3 surface. Indeed, for any such
K3 surface the image of P4 under this linear system is a cubic fourfold with
an ordinary double point. The map q2 is the blow-up of S and q1 is the blow-
down of the quadric hypersurface containing S. Thus there is a one-to-one
correspondence between:

1. points of C̃\C, i.e. cubic fourfolds with a single ordinary double point

2. smooth complete intersections of a smooth quadric and a cubic in P4,
modulo automorphisms of P4.

Almost all smooth sextic K3 surfaces in P4 can be represented in this way.
The only exceptions are the sextic K3 surfaces containing a cubic plane curve;
they are contained in a singular quadric hypersurface. Note that these cor-
respond to cubic fourfolds for which the double point has singular tangent
cone.

This construction suggests that we associate a sextic K3 surface to any
cubic fourfold in C̃\C. The following proposition explains how this can be
done:

Proposition 4.2.1 The Torelli map extends to an open immersion

τ̃ : C̃ → D.

The closed set C̃6 := C̃\C is mapped into D6.

In § 5.3 we shall show that D6 coincides with the period domain for sextic
K3 surfaces. A detailed proof of the proposition is given in §4 of [V], so we
merely explain some details needed for our calculations. (This proposition
also follows from the delicate analysis of singular cubic fourfolds in §6.3.) Let
X0 be a cubic fourfold with an ordinary double point and let S be the associ-
ated K3 surface. Smoothings of ordinary double points of even codimension
have monodromy satisfying T 2 = I. Thus any smoothing of X0 yields a lim-
iting mixed Hodge structure H4

lim which is actually pure. The corresponding
point of the period domain is denoted τ̃(X0). The limiting Hodge structure
may be computed with the Clemens-Schmid exact sequence [Cl]. We make
some observations about this Hodge structure. The desingularization of X0 is
obtained by blowing-up the K3 surface S. This induces a natural imbedding

H2(S,C)0(−1) ↪→ H4
lim
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where the left hand side denotes the primitive cohomology of S with the sign
of the intersection form reversed. The orthogonal complement to the image
of this map consists of a rank-two lattice of integral (2, 2) classes

K6 =
h2 T

h2 3 0
T 0 2

which implies that τ̃(X0) ∈ D6.

4.3 Existence of Special Cubic Fourfolds of Discrimi-
nant d

In this section, we determine the values of d for which Cd is nonempty. The
divisor Dd ⊂ D is nonempty if and only if d is positive and congruent to
0, 2 (mod 6), so we restrict to these values of d. Here we prove the following

Theorem 4.3.1 (Existence of Special Cubic Fourfolds) Let d > 6 be
an integer with d ≡ 0, 2 (mod 6) . Then the divisor Cd is nonempty.

In other words, there are labelled special cubic fourfolds with all possible
discriminants besides two and six. We saw in the last section why there are
no cubic fourfolds of discriminant six: D6 corresponds to the limiting Hodge
structures arising from cubic fourfolds with double points. In the next section
we shall explain why there are no cubic fourfolds of discriminant two: D2

corresponds to the limiting Hodge structures arising from another class of
singular cubic fourfolds. We can speculate a bit on the complement of the
moduli space C in the period domain D. The theorem and examples above,
along with some experimental evidence, suggests the following guess:

Is the complement of the moduli space C in the period domain D
equal to the union of the divisors D2 and D6?

Now we turn to the proof of the theorem; we use a deformation argument.
Fix an integer d satisfying the conditions of the theorem. First, we describe
singular cubics X0 in C̃6 such that

τ̃(X0) ∈ Dd.
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Then we construct a smoothing φ : X → ∆, where Xt is smooth for t 6= 0
and τ(Xt) ∈ Dd. In other words, X0 can be smoothed to a special cubic
fourfold with discriminant d. In particular, this proves that Cd is not empty.

We need the following lemma:

Lemma 4.3.2 Let P be an indefinite even rank-two lattice representing six.
Assume that P is not isomorphic to any of the following:(

6 1
1 0

) (
6 2
2 0

) (
6 0
0 −2

) (
6 3
3 0

)
.

Then there exists a smooth sextic K3 surface S lying on a smooth quadric
with Pic(S) ∼= P .

In proving this, we shall use the following more general lemma:

Lemma 4.3.3 Let P be a rank-two indefinite even lattice, f ∈ P a primitive
element with d := f 2 > 0, and assume there is no E ∈ P with E2 = −2
and fE = 0. Then there exists a K3 surface S with Pic(S) = P and f a
polarization on S. Moreover, f is very ample unless there exists an elliptic
curve C on S with C2 = 0 and fC = 1 or 2.

Recall that Λ denotes the lattice isomorphic to the middle cohomology of a
K3 surface. Using the results of §2 of [LP], there exists an imbedding P ↪→ Λ.
So for some elements of the period domain P is contained in the lattice of
(1, 1)-classes. The surjectivity of the period map for K3 surfaces implies the
existence of a K3 surface S with Picard group P so that f contained in the
Kähler cone of S (see pp. 127 of [B2]). This implies f is a polarization of S.

To complete the proof, we apply results for linear systems on K3 surfaces
proved in [SD]; the references below are to this paper. We analyze the linear
system |f |. First we prove that |f | is base point free. If |f | has base points,
then they are necessarily contained in some fixed component of f (Theorem
3.1). This fixed component is supported on a −2 curve E and f is necessarily
of the form d+2

2
C + E, where C is an elliptic curve such that C2 = 0 and

EC = 1 (§2.7). But then fC = 1, which is excluded by the hypotheses.
Now we consider the morphism obtained from the linear series |f |. This
morphism is an isomorphism provided it is birational (Theorem 6.1). It fails
to be birational only if all the curves in |f | are hyperelliptic. This happens
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only if there exists an elliptic curve C with fC = 2 (Theorem 5.2). This
again is excluded by the hypotheses. �
To complete the proof of the main lemma, we note that the image under |f |

is not contained in a singular quadric because P �
(

6 3
3 0

)
. �

We use this lemma to construct singular cubicsX0 ∈ C̃6 such that τ̃(X0) ∈
Dd. Let S be one of the K3 surfaces constructed in the lemma, and let X0 be
the corresponding singular cubic fourfold. Let v ∈ P = Pic(S) be primitive
with respect to the degree six polarization, i.e. v ∈ H2(S,Z)0 ∩ H1,1(S).
Recall that H2(S,C)0(−1) is naturally imbedded into the limiting Hodge
structure H4

lim arising from X0. The image of v under this map is an integral
class of type (2, 2) in H4

lim, denoted v′. We use v′ to relabel H4
lim by letting

Kd denote the saturation of the lattice Zh2 + Zv′. Using Proposition 3.2.2,
we may compute

d =

{
1/3 〈v′, v′〉 if < v′, H4(X,Z)0 >= 3Z
3 〈v′, v′〉 if < v′, H4(X,Z)0 >= Z

=

{
−1/3 (v, v) if (v,H2(S,Z)0) = 3Z
−3 (v, v) if (v,H2(S,Z)0) = Z

= −1

2
disc(P ).

For each d > 6 with d ≡ 0, 2 (mod 6) , there exist lattices P satisfying the
conditions of the lemma with discriminant −2d. If d = 6n we may take

P =

(
6 0
0 −2n

)
and if d = 6n+ 2 we may take

P =

(
6 2
2 −2n

)
.

This completes the construction.
We assume that X0 is the singular cubic constructed in the previous para-

graph, x0 = τ̃(X0), and x0 ∈ D6 ∩ Dd. To complete the proof, we construct
a smoothing φ : X → ∆′ where Xt is smooth for t 6= 0, and τ(Xt) ∈ Dd. Let
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γ : ∆ → D be a holomorphic map such that γ(0) = x0 and γ(u) ∈ Dd\D6 for
u 6= 0. The existence of such a curve follows from the construction of D as
the quotient Γ+\D′. Because τ̃ is an open immersion, we may shrink ∆ so
that γ lifts through τ̃ , giving a map µ : ∆ → C̃. Consequently, there exists a
ramified base change b : ∆′ → ∆ and a family X → ∆′ so that Xt = µ(b(t)).
By construction we have

Xt ∈ C ∩ τ−1(Dd) = Cd
for t 6= 0. In particular, Cd is nonempty. �

4.4 d=2: The Determinantal Cubic Fourfold

The results of the previous sections allow us to exhibit (possibly singular)
cubic fourfolds of all discriminants greater that two. In this section, we
address the remaining case where the discriminant is equal to two. We shall
not exhibit cubic fourfolds of discriminant two; indeed, there are no such
smooth cubic fourfolds. However, we can explain how the Hodge structures
parametrized by the divisor D2 ⊂ D arise as limiting Hodge structures of
smooth cubic fourfolds.

To this end, we introduce the determinantal cubic fourfold X0, defined by
the homogeneous equation: ∣∣∣∣∣∣

a b c
b d e
c e f

∣∣∣∣∣∣ = 0.

The determinantal cubic fourfold is singular along the locus where the 2× 2
minors of the determinant are simultaneously zero. These minors are pre-
cisely the equations cutting out a Veronese surface V ⊂ P5, the image of P2

under the linear system |OP2(+2)|. We shall consider deformations X → ∆
of X0 with equations ∣∣∣∣∣∣

a b c
b d e
c e f

∣∣∣∣∣∣ + tG = 0

where G is the equation of a smooth cubic. We assume that the curve C ⊂ V
defined by the equation G|V = 0 is also smooth. The curve C is a sextic plane
curve, and we let S denote the double cover of V branched over the curve C,
a degree-two K3 surface. We have the following theorem:
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Theorem 4.4.1 Let X → ∆ be a deformation of the determinantal cubic
fourfold X0, satisfying the conditions above. Then the limiting mixed Hodge
structure H4

lim of this family is pure and special of discriminant two. The
primitive Hodge structure H2(S,C)0(−1) imbeds into the orthogonal comple-
ment of the rank-two lattice K2.

Geometrically, the determinantal cubic is contained in the indeterminacy
locus of the Torelli map, but after blowing up this point the Torelli map is
well-defined, at least at the generic point of the exceptional divisor. More-
over, this exceptional divisor maps birationally to the divisor D2 ⊂ D.

The proof of the theorem is essentially a calculation with the Clemens-
Schmid exact sequence. We begin by computing the semistable reduction for
X :

Lemma 4.4.2 A semistable reduction X ′ → ∆′ of X → ∆ is obtained from
the following operations:

1. Take the base change ∆′ → ∆ given by the formula t = u2.

2. Blow-up the subvariety V ⊂ X ×∆ ∆′.

The equation of the base-changed family X ×∆ ∆′ ⊂ P5
∆′ is∣∣∣∣∣∣

a b c
b d e
c e f

∣∣∣∣∣∣ + u2G = 0.

The total space of X ×∆ ∆′ is now singular along the Veronese V in the
central fiber. We let X ′ be the blow-up of X×∆∆′ along V , E the exceptional
divisor, and X0 the proper transform of X0. We claim that X ′ is now smooth,
and that E and X0 intersect transversally along the smooth threefold E0 =
X0 ∩ E.

The variety X ×∆ ∆′ is double along V , a codimension-three subvariety.
Using the equation above we find that for x ∈ V \C, the projectivized tangent
cone to X×∆∆′ at x is a cone over a smooth quadric surface. At points x ∈ C
this quadric surface acquires an ordinary double point. Codimension-three
double points with these tangent cones are resolved by a single blow-up, so
blowing-up V resolves the singularities of X ×∆ ∆′. The exceptional divisor
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q : E → V has the structure of a quadric surface bundle, and the fibers over
C have ordinary double points. Thus E is smooth and reduced in the central
fiber of X ′.

Now we analyze the proper transform of X0. The fourfold X0 is double
along the codimension-two subvariety V , which parametrizes the matrices
of rank one. The proper transform X0 is the blow-up of X0 along V , with
exceptional divisor E0. The fibers of E0 → V have a natural interpretation:
for each M ∈ V , the fiber over M is the projectivization of the kernel of
the corresponding rank-one matrix. This implies that E0 is a P1 bundle over
V . We may interpret X0 as the set of pairs (M,x), where M is a symmetric
3 × 3 matrix and x ∈ P(ker(M)). In particular, X0 is smooth and meets E
along the smooth subvariety E0. It is not hard to see that this intersection
is transverse.�

The next lemma gives a more precise description of the relationship be-
tween E and E0:

Lemma 4.4.3

1. The quadric surface bundle q : E → V can be imbedded into a P3 bundle

E ↪→ P(N)
q ↘ ↓ π

V

where N is the normal bundle to V in P5
∆′.

2. The class of E in Pic(P(N)) is 2ξ + 6η, where ξ = c1(OP(N)(+1)) and
η = c1(π

∗OP2(+1)).

3. The class of E0 in Pic(E) is just ξ|E. In other words, E0 is a hyperplane
section to E in P(N).

Let Y denote the blow-up of P5
∆′ along V , and let E denote the exceptional

divisor. Since Y is a blow-up along a smooth center, we have that E = P(N)
is a P3 bundle over V . We interpret X ′ as the proper transform of X ×∆ ∆′

in Y . The exceptional divisor E ⊂ X ′ imbeds into the exceptional divisor
E ⊂ Y , giving the diagram in the lemma.

To prove the other statements we compute in Pic(Y). Let h denote the
pullback of the hyperplane class from P5

∆′ . The class of X ′ in Pic(Y) is
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3h − 2E . Since E = X ′ ∩ E , we find that the class of E in Pic(E) is just
the restriction of 3h− 2E to E = P(N). Since h|P(N) = 2η and −E|P(N) = ξ,
we conclude the second statement of the lemma. The subvariety E0 ⊂ E is
obtained by intersecting E with the proper transform in Y of the central fiber
of P5

∆′ . The class of this proper transform is equal to −E , which restricts to
the class ξ on P(N). This proves the third statement. �

To apply the Clemens-Schmid exact sequence to X ′, we must know the
cohomology of the components of the central fiber. In fact, all the interest-
ing cohomology comes from the exceptional divisor E. Let ξ and η denote
the divisor classes on E induced from P(N), and let T ⊂ H4(E,Z) denote
the sublattice generated by ξ2, ξη, η2. We use W to denote the orthogonal
complement to T in H4(E,Z) and WE to denote the corresponding Hodge
structure, which is called the nonspecial cohomology of E.

Lemma 4.4.4 The nonspecial cohomology of E is isomorphic to the primi-
tive cohomology of the K3 surface S:

WE(+1) = H2(S,C)0.

To expedite our proof, we use the following result of Laszlo on quadric bundles
over P2:

Proposition 4.4.5 ([La] §II 1,2) The cohomology group H4(E,Z) is torsion
free. There exists a morphism of Hodge structures

α : WE → H2(S,C)0

satisfying the cup product condition

〈x, y〉E = − (α(x), α(y))S .

The image α(W ) ⊂ H2(S,Z)0 is a sublattice of finite index.

This map is analogous to the Abel-Jacobi map, and is constructed by using
a correspondence between E and S. The proposition implies that α is an
isomorphism if and only if

| disc(W )| = | disc(H2(S,Z)0)| = 2.
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Since W is the orthogonal complement to T , it suffices to prove that the
saturation of T has discriminant two.

We begin by computing the discriminant of T itself. The lattice T has
intersection matrix

ξ2 ξη η2

ξ2 48 −12 2
ξη −12 2 0
η2 2 0 0

and thus has discriminant eight. To prove the lemma, we must show that T
is an index two sublattice of its saturation.

We shall produce a class ν in H4(E,Z) such that 2ν ∈ T but ν 6∈ T . We
construct this class as the push-forward of a divisor on E0 by j : E0 ↪→ E.
Recall that in the proof of the first lemma, we found that E0 → V is a P1

bundle over P2. ¿From the second lemma, we know that ξ restricts to a class
ξ0 meeting each of the fibers in two points, and η restricts to a class η0 that
does not meet the fibers. In particular, this implies that ξ0 and η0 do not
generate the Picard group of E0, but an index two subgroup. Let ν0 be an
element of Pic(E0) intersecting the fibers in a single point. Since the class of
E0 in Pic(E) is ξ, we see that j∗(ξ0) = ξ2 and j∗(η0) = ξη. The class ν = j∗ν0

has the properties we seek. �
The following lemma completes our description of the relevant parts of

the cohomology of X0, E, and E0:

Lemma 4.4.6

1. We have
Pic(E)⊗Q = H2(E,Q) = Qη ⊕Qξ

Pic(E0)⊗Q = Qη0 ⊕Qξ0
Pic(X0)⊗Q = Qh⊕Qe0

where h is the restriction of the hyperplane class and e0 is the class of
the exceptional divisor E0. If i : E0 ↪→ X0 is the inclusion, then we
have i∗(e0) = −ξ0 and i∗(h) = 2η0.

2. The cohomology of the varieties E0 and X0 are generated by their Picard
groups.
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3. The cohomology groups H4(X0,Z) and H4(E0,Z) have ranks three and
two respectively. The restriction map i∗ : H4(X0,Z) → H4(E0,Z) has
finite cokernel.

For the first statement, observe that ξ and η give independent elements of
the Picard group of E. However, H2(E,Q) has rank two (see [La] §I.1), so
these two elements generate.

For the statements concerning E0, recall from the proof of the first lemma
that E0 is a P1 bundle over V = P2. This implies that Pic(E0) generates
the cohomology of E0 and H4(E0,Z) has rank three. Moreover, ξ0 and η0

generate an index two subgroup of Pic(E0).
Now recall the geometric description of X0 from the proof of the first

lemma: X0 is the set of pairs (M,x) where M is a symmetric 3 × 3 matrix
and x ∈ P(ker(M)). If we consider X0 as a subvariety of X0×P2, the second
projection φ gives X0 the structure of a P2 bundle over P2. For x ∈ P2,
φ−1(x) is the set of 3 × 3 symmetric matrices M with kernel containing x.
Consequently, the cohomology of X0 is generated by its Picard group, which
has rank two. This also implies that the middle cohomology of X0 has rank
three. Moreover, the classes h and e0 are independent in the Picard group
and generate over Q. By the proof of the second lemma h|E = 2η and
e0 = E|X0

, so i∗(h) = h|E0 = 2η0 and i∗(e0) = E|E0 = −ξ|E0 = −ξ0. The last
statement of the lemma follows. �

To complete the proof of the theorem, we apply the Clemens-Schmid
exact sequence [Cl] (or [GrS]):

0 → H2
lim → H6(X

′
0,C)

ψ→ H4(X ′
0,C)

ρ→ H4
lim

N→ H4
lim. (∗)

Here X ′
0 denotes the central fiber of X ′, so we have

X ′
0 = X0 ∪E0 E.

Our goal is to prove that ρ : H4(X
′
0,C) → H4

lim is surjective; this implies
that N = 0 and the limiting mixed Hodge structure H4

lim is actually pure.
We shall also prove that ρ maps the nonspecial cohomology of E into H4

lim,
so the third lemma shows that H4

lim ∈ D2.
We begin by computing the terms of the exact sequence (∗). The first

term H2
lim = Ch, because the monodromy action on H2 is trivial. Since
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E0 has no odd-dimensional homology, the spectral sequence computing the
second term degenerates to

0 → H6(E0) → H6(X0)⊕H6(E) → H6(X
′
0) → 0.

The left arrow is the map (i∗,−j∗), where i and j are the corresponding
inclusions. Applying the fourth lemma and Poicaré duality, we see that
H6(X

′
0,C) is three-dimensional. The third term of (∗) can be computed from

0 → H4(X ′
0,C) → H4(X0,C)⊕H4(E,C) → H4(E0,C) → 0

where the right arrow is the difference of the restriction maps i∗ and j∗.
Applying the third and fourth lemmas, we conclude thatH4(X ′

0,C) is twenty-
five-dimensional. This implies that the image of ρ is twenty-three-dimensional,
so ρ is surjective and N = 0.

Recall that WE was defined as the orthogonal complement to the lattice T
generated by ξ2, ξη, η2. The restrictions of these classes generate H4(E0,C),
so j∗ sends the nonspecial cohomology to zero and we may consider 0⊕WE ⊂
H4(X ′

0,C). Because ψ is a morphism of Hodge structures, ψ(H6(X
′
0,C)) ⊂

H4(X ′
0,C) is spanned by integral (2, 2) classes. If S is a typical degree-

two K3 surface, the only integral (2, 2) classes in H4(X ′
0,C) are mapped

into the saturation of H4(X0,Z) ⊕ T , and so are orthogonal to 0 ⊕WE. In
particular, the image of ψ is orthogonal to 0 ⊕WE. Consequently ρ maps
WE isomorphically onto its image in H4

lim. This completes the proof of the
theorem. �

5 Associated K3 Surfaces

5.1 A Motivating Example

Let (X,Kd) be a labelled special cubic fourfold with discriminant d. The re-
sults of section three imply that d completely determines the lattice structure
on K⊥

d . We shall use the following terminology for this lattice:

Definition 5.1.1 Let (X,Kd) denote a labelled special cubic fourfold with
discriminant d. The orthogonal complement to Kd

K⊥
d ⊂ L0
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will be called the nonspecial cohomology lattice of (X,Kd). Let WX,Kd
denote

the polarized Hodge structure on K⊥
d induced from the Hodge structure on

H4(X,C)0. This is called the nonspecial cohomology of (X,Kd).

We illustrate with an example how this notion is related to the rationality of
certain cubic fourfolds. Let X be a generic Pfaffian cubic fourfold (cf. [BD]
or § 4.1.3). We have a birational map from P4 to X which blows up a surface
S̃ birational to a degree fourteen K3 surface S. Consequently S̃ parametrizes
a correspondence of rational curves on X, which induces an imbedding of the
primitive cohomology H2(S,Z)0 into H4(X,Z)0. The following proposition
states this more precisely:

Proposition 5.1.2 Let (X,K14) be a generic Pfaffian cubic fourfold. Then
there exists a degree fourteen K3 surface S and an isomorphism of Hodge
structures:

WX,K14 = H2(S,C)0(−1).

Note that the weight is shifted by two, so the sign of the intersection form is
reversed.

5.2 Computation of Nonspecial Cohomology

In this section, we determine the special cubic fourfolds for which the non-
special cohomology is isomorphic to the primitive cohomology of a polarized
K3 surface. More generally, we shall consider pairs (S, f) where S is a K3
surface and f is a pseudo-polarization on S with f 2 = d. Recall that a
pseudo-polarization is a divisor contained in the closure of the Kähler cone.
We use H2(S,C)0 to denote the orthogonal complement of f in H2(S,C).
Our goal is the following theorem:

Theorem 5.2.1 (Existence of Associated K3 Surfaces) Let (X,Kd) be
a labelled special cubic fourfold of discriminant d, with nonspecial cohomology
WX,Kd

. There exists a polarized K3 surface (S, f) such that

WX,Kd
∼= H2(S,C)0(−1)

if and only if the following conditions are satisfied:

1. 46 | d and 96 | d
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2. p6 | d if p is an odd prime, p ≡ −1(mod 3)

We say that the pair (S, f) is associated to (X,Kd).

We first show how the proof of the theorem boils down to a computation
of lattices. Let Λ0

d be a lattice isomorphic to the primitive middle cohomol-
ogy of a degree d K3 surface and let K⊥

d denote the orthogonal complement
of Kd. The isomorphism asserted in the theorem implies an isomorphism
of lattices K⊥

d
∼= −Λ0

d. On the other hand, assume we are given a labelled
special cubic fourfold (X,Kd) and an isomorphism of lattices K⊥

d
∼= −Λ0

d.
Then WX,Kd

(+1) has the form of the primitive cohomology of a pseudo-
polarized K3 surface. Indeed, since the Torelli map for K3 surfaces is sur-
jective [B2] [Si], there exists a pseudo-polarized K3 surface (S, f) such that
H2(S,C)0(−1) ∼= WX,Kd

. Moreover, X is smooth so H4(X,Z)0 ∩ H2,2(X)
does not contain any classes with self-intersection +2 ([V] §4 Prop. 1).
Therefore there are no −2 curves on S orthogonal to f , so f is actually
a polarization.

The arguments of the previous paragraph reduce the theorem to the fol-
lowing proposition:

Proposition 5.2.2 Let Λ0
d be the cohomology lattice of a degree d K3 surface

and let K⊥
d be the nonspecial cohomology lattice of a labelled special cubic

fourfold of discriminant d. Then K⊥
d
∼= −Λ0

d if and only if the following
conditions are satisfied:

1. 46 | d and 96 | d

2. p6 | d if p is an odd prime, p ≡ −1(mod 3)

In order to prove this result, we need to compute the structure of the
lattice Λ0

d. By the properties of Λ = H2(S,Z) stated in § 2.1, we may assume
that the polarization f = v1+

d
2
w1. Consequently, we obtain the isomorphism

Λ0
d
∼= (−d)⊕H⊕2 ⊕ (−E8)

⊕2.

The term (−d) represents the sublattice generated by y = v1 − d
2
w1. The

discriminant group d(Λ0
d) is equal to Z(y

d
)/Zy. We use qΛ0

d
: d(Λ0

d) → Q/2Z
to denote the discriminant quadratic form. Note that qΛ0

d
(y
d
) = −1

d
( mod 2Z),

which completely determines qΛ0
d
.

35



We now determine when d(K⊥
d ) and d(−Λ0

d) are isomorphic as groups with
a Q/2Z-valued quadratic form. We first consider the case d ≡ 2 (mod 6). In
this case both discriminant groups are isomorphic to Z/dZ, so we just need
to check when the quadratic forms are conjugate by an automorphism of
Z/dZ. Let u and w be generators of d(K⊥

d ) and d(−Λ0
d) such that qK⊥

d
(u) =

2d−1
3d

(mod 2Z) and q−Λ0
d
(w) = 1

d
(mod 2Z) (see Proposition 3.2.6). The

quadratic forms are conjugate if and only if the integer 2d−1
3

is a square
modulo 2d. This is equivalent to saying that −3 is a square modulo 2d.
By quadratic reciprocity this is the case if and only if d is not divisible by
four and any odd prime p|d satisfies p 6≡ −1 (mod 3). We conclude that the
discriminant forms agree if and only if the conditions of the proposition are
satisfied.

We consider the case d ≡ 0 (mod 6) and we write d = 6n. The group
d(K⊥

d ) is cyclic if and only if nine does not divide d, so we restrict to this case.
Let u and w be generators of d(K⊥

d ) and d(−Λ0
d) such that qK⊥

d
(u) = 2

3
−

3
d

(mod 2Z) and q−Λ0
d
(w) = 1

d
(mod 2Z). The quadratic forms are conjugate

if and only if the integer 2
3
d− 3 is a square modulo 2d. Equivalently 4n− 3

must be a square modulo 12n, or −3 is a square mod 4n and 4n is a square
mod 3. By quadratic reciprocity, this is the case if and only if n is odd and
any prime p|n satisfies p ≡ 1 (mod 3). Again, we conclude the discriminant
forms agree if and only if the conditions of the proposition are satisfied.

This argument immediately implies that the conditions on d are necessary
for K⊥

d to be isomorphic to −Λ0
d. On the other hand, K⊥

d is the unique
even lattice of signature (19, 2) with discriminant form d(K⊥

d ) [Ni] 1.14.3.
Hence if the discriminant forms of K⊥

d and −Λ0
d agree, we may conclude that

K⊥
d
∼= −Λ0

d. This concludes the proof. �

5.3 Isomorphisms of Period Domains

In this section, we elaborate the connection between certain special cubic
fourfolds and K3 surfaces. We begin with a brief description of the period
domains for polarized K3 surfaces; we retain the notation introduced in § 2.1
and § 5.2. Let Σ denote the automorphisms of Λ, and Σd the automorphisms
fixing some primitive v = v1 + d

2
w1 ∈ Λ. The elements of Σd yield automor-

phisms of Λ0
d = v⊥. The intersection form determines a quadric hypersurface

Q ⊂ P(Λ0
d⊗C). Λ0

d⊗C is equipped with a Hermitian form given by the for-
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mula (u, v̄). The locus in Q where this form is positive is a topological open

subset with two connected components, denoted N ′
d and N ′

d respectively.
These two components correspond to the two orientations on the positive
definite part of Λ0

d ⊗R. N ′
d is called the local period domain for degree d K3

surfaces; it is an open nineteen-dimensional complex manifold. Let Σ+
d ⊂ Σd

denote the subgroup stabilizingN ′
d. Again applying the results from §6 of the

appendix of [Sa], we find that N ′
d is a bounded symmetric domain of type IV

and Σ+
d is an arithmetic group acting holomorphically on N ′

d. The quotient
Nd := Σ+

d /N ′
d is therefore a quasi-projective variety, called the global period

domain for degree d K3 surfaces.
We introduce a bit more notation for special cubic fourfolds as well. Recall

that a marked special Hodge structure is a point x ∈ D′ along with the data
of an imbedding Kd ↪→ H2,2(x) ∩ L preserving the class h2. Let G+

d ⊂ Γ+
d

be the subgroup acting trivially on Kd. We use Dmar
d to denote the marked

special Hodge structures of discriminant d, modulo the action of G+
d . The

fiber product Dmar
d ×D C is written Cmar

d , the marked special cubic fourfolds
of discriminant d. We have natural forgetting maps

Dmar
d → Dlab

d Cmar
d → Clab

d .

The following proposition describes the relationship amongD′
d, G

+
d ,Dmar

d , and
Dlab
d :

Proposition 5.3.1 G+
d = Γ+

d if d ≡ 2 (mod 6) and G+
d ⊂ Γ+

d is an index-two
subgroup if d ≡ 0 (mod 6). The natural map Dmar

d → Dlab
d is an isomorphism

if d ≡ 2 (mod 6) and a double cover if d ≡ 0 (mod 6). Furthermore, Dmar
d =

G+
d \D′

d and thus is connected for all d 6= 6.

We begin with the first statement. The lattice Kd has no automorphisms
preserving h2 if d ≡ 2 (mod 6). This implies that G+

d = Γ+
d for these values

of d. If d ≡ 0 (mod 6) then Kd has an involution, which acts on K0
d as

multiplication by −1. We claim this involution extends to an element γ ∈ Γ+
d .

By the classification of the orbits Γ+\L0 in Proposition 3.2.5, we may assume
v = v1 + d

6
w1. Choose γ equal to multiplication by −1 on both hyperbolic

summands of L0 and equal to the identity elsewhere. We have that γ ∈ Γ+
d

but γ 6∈ G+
d , so G+

d is a proper subgroup of Γ+
d .

Now we turn to the second statement. For d ≡ 2 (mod 6) we have seen
that each labelling has a unique marking, so the forgetting map is an iso-
morphism. In the case d ≡ 0 (mod 6) we saw that each labelling has two
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markings permuted by the action of Γ+
d . This implies that the forgetting

map is a double cover.
For the third statement, we recall that Dlab

d = Γ+
d \D′

d. Hence for d ≡
2 (mod 6) the result is immediate. For d ≡ 0 (mod 6), we must check that
any γ ∈ Γ+

d acting nontrivially on Kd also acts nontrivially on D′
d. For

d 6= 6, if γ acts nontrivially on Kd then the induced action on d(Kd) is not
equal to ±1. However, the groups d(Kd) and d(K⊥

d ) are isomorphic, so the
induced action on d(K⊥

d ) is not ±1. Now D′
d is a topologically open subset

of a quadric hypersurface in P(K⊥
d ⊗ C), so only scalar multiplications act

trivially on D′
d. In particular, γ necessarily acts nontrivially. �

Remark: There exists a nontrivial element γ ∈ Γ+
6 \G+

6 which acts trivially
on K⊥

6 . It follows that Dmar
6 6= G+

6 \D′
6 but rather that Dlab

6 = G+
6 \D′

6.
We now restrict to values of d for which there exists an isomorphism

jd : K⊥
d → −Λ0

d (see Proposition 5.2.2). We choose orientations on the
negative definite parts of K⊥

d and −Λ0
d compatible with jd. Then there is

an induced isomorphism between the local period domains D′
d and N ′

d. We
would like to compare the corresponding global period domains Dlab

d and Nd.
We shall prove the following results:

Theorem 5.3.2 Let d be a positive integer such that there exists an iso-
morphism jd : K⊥

d → −Λ0
d. If d 6= 6 then there is an induced isomorphism

id : Dmar
d → Nd. Furthermore, we have that Dlab

6
∼= N6.

This isomorphism of period domains depends on the choice of jd. Each
isomorphism jd induces an isomorphism of discriminant groups j′d : d(K⊥

d ) →
d(−Λ0

d) preserving the Q/2Z-valued quadratic forms on these groups [Ni]
§1.3. We shall denote the set of such isomorphisms Isom(d(K⊥

d ), d(−Λ0
d)).

Note that the group {n ∈ Z/dZ : n2 = 1} acts faithfully and transitively on
this set.

Theorem 5.3.3 For d 6= 6, the various isomorphisms id : Dmar
d → Nd

correspond to elements of Isom(d(K⊥
d ), d(−Λ0

d))/(±1). The isomorphism
i6 : Dlab

6 → N6 is unique.

These two theorems have the following corollary:

Corollary 5.3.4 (Immersions into Moduli Spaces of K3 Surfaces) Let
d 6= 6 be a positive integer such that there exists an isomorphism jd : K⊥

d →
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−Λ0
d. Then there is an imbedding id : Cmar

d ↪→ Nd of the marked special cu-
bic fourfolds of discriminant d into the global period domain for degree d K3
surfaces, which is unique up to the choice of an element of

Isom(d(K⊥
d ), d(−Λ0

d))/(±1).

Moreover, there is a unique imbedding i6 : C̃lab
6 ↪→ N6.

As we shall see in §6, geometrical considerations will sometimes mandate
specific choices of id (e.g. in the case d = 14).

We prove the first theorem. First, we compare the action of Σ+
d on Λ0

d to
the action of G+

d on K⊥
d . We claim that Σ+

d is the group of automorphisms
of Λ0

d preserving the orientation on the positive definite part of Λ0
d ⊗ R and

acting trivially on the discriminant group d(Λ0
d). This follows from the results

of [Ni] §1.4, which imply that any such automorphism extends uniquely to
an element of Σ+

d . By the same argument, G+
d is the group of automorphisms

of K⊥
d preserving the orientation on the negative definite part of K⊥

d ⊗R and
acting trivially on the discriminant group d(K⊥

d ).
Now suppose we are given an isomorphism jd : K⊥

d → −Λ0
d. This induces

an isomorphism D′
d → N ′

d. By the arguments of the previous paragraph, it
also induces an isomorphism G+

d → Σ+
d . Consequently, we obtain an isomor-

phism id : G+
d \D′

d → Σ+
d \N ′

d. Applying Proposition 5.3.1, this translates into
an isomorphism id : Dmar

d → Nd for d 6= 6. The remark after the proposition
also yields an isomorphism i6 : Dlab

6 → N6. This completes the proof of the
first theorem. �

We turn to the proof of the second theorem. We must determine when
two different isomorphisms j1

d : K⊥
d → −Λ0

d and j2
d : K⊥

d → −Λ0
d induce the

same isomorphism id : G+
d \D′

d → Σ+
d \N ′

d. If j2
d = σ◦j1

d for some σ ∈ Σ+
d then

j1
d and j2

d induce the same isomorphisms of period domains. Also, if j1
d = −j2

d

then j1
d and j2

d induce the same isomorphism between D′
d and N ′

d, because
these manifolds lie in the projective spaces P(K⊥

d ⊗ C) and P(Λ0
d ⊗ C).

On the other hand, assume that j1
d and j2

d induce the same isomorphism
between G+

d \D′
d and Σ+

d \N ′
d. Then there exist γ ∈ G+

d and σ ∈ Σ+
d such

that j1
d ◦ γ and σ ◦ j2

d induce the same isomorphism between D′
d and N ′

d. But
then j1

d ◦ γ = ±σ ◦ j2
d . Combining the arguments of these two paragraphs,

we conclude that the isomorphisms between G+
d \D′

d and Σ+
d \N ′

d correspond
to certain elements of Isom(d(K⊥

d ), d(−Λ0
d))/(±1).
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It remains to check that each element of Isom(d(K⊥
d ), d(−Λ0

d))/(±1) ac-
tually arises from an isomorphism between K⊥

d and −Λ0
d respecting the ori-

entations on the negative definite parts. Now K⊥
d has an automorphism g

reversing the orientation on the negative part and acting trivially on d(Kd).
Take g to be the identity except on a hyperbolic summand of the orthogonal
decomposition for K⊥

d ; on the hyperbolic summand set g equal to multiplica-
tion by −1. Hence it suffices to show that the automorphisms of K⊥

d induce
all the automorphisms of d(K⊥

d ), which is proved in [Ni], Theorem 1.14.2 and
Remark 1.14.3. This completes the proof of the second theorem. �

6 Fano Varieties of Special Cubic Fourfolds

6.1 Introduction and Necessary Conditions

In this section, we provide a geometric explanation for the K3 surfaces associ-
ated to some special cubic fourfolds. The general philosophy underlying our
approach is due to Mukai [Mu1],[Mu2],[Mu3]. Let S be a polarized K3 surface
and let MS be a moduli space of simple sheaves on S. Quite generally, MS is
smooth and possesses a natural nondegenerate holomorphic two-form ([Mu1]
Theorem 0.1). Furthermore, the Chern classes of the ‘quasi-universal sheaf’
on S×MS induce correspondences between S and MS. If MS is compact of
dimension two then it is a K3 surface isogenous to S; the Hodge structure of
MS can be read off from the Hodge structure of S and the numerical invari-
ants of the sheaves ([Mu2] Theorem 1.5). Conversely, given a variety F with a
nondegenerate holomorphic two-form and an isogeny H2(S,Q) → H2(F,Q),
one can try to interpret F as a moduli space of sheaves on S. In the case
where F is a K3 surface, we often have such interpretations ([Mu2] Theorem
1.9).

The paradigm for our discussion is the discriminant fourteen case. We
have seen that a labelled special cubic fourfold of discriminant fourteen has
an associated degree fourteen K3 surface. For a generic such cubic fourfold
this may be explained as follows. Let X be a generic special cubic fourfold
of discriminant fourteen, F the Fano variety of X, and S the degree fourteen
K3 surface associated to S. Then F is isomorphic to S[2], the Hilbert scheme
of length two subschemes of S [BD]. Note that the ideal sheaves defining
elements of S[2] can be interpretted as simple sheaves on S.
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There exist X ∈ C14 for which the isomorphism between F and S[2] con-
structed in [BD] breaks down. We give an example. Let X be a smooth
cubic fourfold containing two disjoint planes π1 and π2. If we put K14 =<
h2, π1 +π2 > then (X,K14) is a labelled special cubic fourfold of discriminant
fourteen. The associated K3 surface S can be represented as the complete in-
tersection of forms of types (1, 2) and (2, 1) on P2×P2. The classes (1, 0) and
(0, 1) restrict to classes C1 and C2 on S with intersections C2

1 = 2, C2
2 = 2,

and C1C2 = 5. The class f = C1 + C2 gives the degree fourteen polarization
on S. Note that the curves in |C1| and |C2| are genus two and degree seven
on S. Assume that F isomorphic to S[2] with hyperplane class g = 2f − 5δ.
A general C ∈ |C1| is smooth and hyperelliptic, and the g1

2 on C corresponds
to a rational curve C ′ on S[2]. The degree of g on C ′ is

g|C ′ = 2f |C ′ − 5δ|C ′ = 14− 15 = −1

which is absurd. This proves that the construction of Beauville and Donagi
does not give an isomorphism between F and S[2].

Let X be a cubic fourfold and assume we have an isomorphism between
its Fano variety F and S[2] for some K3 surface S. In this situation we have
an isomorphism (§ 2.1)

H2(F,Z) ∼= H2(S,Z)⊕⊥ Zδ

and the hyperplane class of F may be written g = af − bδ where f is some
polarization of S. We set d = (f, f). The Abel-Jacobi map α : H4(X,C)0 →
H2(F,C)0(−1) induces an isomorphism betweenH2(S,C)0(−1) and a codimension-
two subspace of H4(X,C), which we take as the nonspecial cohomology of
X. Our labelling Kd is then the orthogonal complement to α−1(H2(S,Z)0)
in H4(X,Z). We also obtain an isomorphism between K⊥

d and −Λ0
d, the

primitive cohomology lattice of S with respect to f .
This discussion is summarized in the following proposition:

Proposition 6.1.1 Let X be a cubic fourfold with Fano variety F . Assume
there is an isomorphism between F and S[2] for some K3 surface S. Then X
has a labelling Kd such that S is associated to (X,Kd). Moreover, the map

id : Cmar
d ↪→ Nd

may be chosen so that (X,Kd) is mapped to S.
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Only the last statement requires any explanation. By Theorem 5.3.2 id is
determined by the choice of an isomorphism between K⊥

d and −Λ0
d.

We can explain the map id geometrically, at least for generic cubic four-
folds along Cd. First, we need the following theorem on the deformation
spaces of the varieties S[2]:

Theorem 6.1.2 (Deformation Spaces of the Varieties S[2]) Let S be a
K3 surface, and let 2δ denote the elements of S[2] which are supported at a
single point. The deformation space of S[2] is smooth and has dimension
twenty-one. Deformations of the surface S correspond to a divisor in this
space which may be characterized as the deformations for which δ remains a
divisor.

This is one of a number of results on the deformation theory of S[2] which
are contained in [B]. We retain the assumptions and notation of the last
proposition. By construction, the variety Cd corresponds to the deformations
of F for which δ remains algebraic. Applying the theorem quoted above,
there is some small analytic neighborhood in Cd such that the deformations
of F in this neighborhood correspond to deformations of the polarized K3
surface S. The Fano varieties in this neighborhood are all isomorphic to S

[2]
1

for some deformation S1 of S. Furthermore, it is not hard to see that the
isomorphism between the Fano varieties and the blown-up symmetric squares
remains valid in an open étale neighborhood of X in Cd. In particular, a
generic cubic fourfold in Cd has Fano variety isomorphic to the blown-up
symmetric square of a K3 surface. From this argument, we may conclude
the following proposition:

Proposition 6.1.3 Retain the notation and assumptions of the previous
proposition. Let (X1, Kd) be a generic cubic fourfold of Cmar

d and let S1 =

id(X1, Kd). Then the Fano variety of X1 is isomorphic to S
[2]
1 .

As we have seen, the cubic fourfolds with Fano varieties isomorphic to
blown-up symmetric squares of K3 surfaces are particularly nice. So we ask
the following question:

Let (X,Kd) be a generic special cubic fourfold of discriminant d
and let F be the Fano variety of X. For which values of d is F
isomorphic to S[2] for some K3 surface S?
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Theorem 5.2.1 gives sufficient conditions for the existence of a K3 surface as-
sociated to (X,Kd). The next proposition shows that these are not sufficient
to guarantee that the Fano varieties are isomorphic to blown-up symmetric
squares of K3 surfaces. For instance, Fano varieties of special cubic fourfolds
of discriminant 74 are not generally of the form S[2], because the equation

74a2 = 2(n2 + n+ 1)

has no integral solutions (see [G] or the tables in [CS]). However, these
special cubic fourfolds do have associated K3 surfaces.

Proposition 6.1.4 Assume that for a generic special cubic fourfold of dis-
criminant d, the Fano variety is isomorphic to S[2] for some K3 surface S.
Then there exist positive integers n and a such that

d = 2
n2 + n+ 1

a2
.

Let (S, f) be a polarized K3 surface of degree d such that Pic(S) = Zf .
Assume that S[2] is the Fano variety of a cubic fourfold. Then S[2] admits a
very ample line bundle g of degree 108, such that the primitive cohomology g⊥

is isomorphic to M0. We write g = bf −mδ. Computing in the cohomology
ring of S[2] we find

g4 = 3(db2 − 2m2)2

which implies that
db2 − 2m2 = 6.

Furthermore, if the orthogonal complement g⊥ is isomorphic to M0 then
disc(g⊥) = 3. For this to be the case, it is necessary that (M, g) = 2Z and
so b is even. Writing b = 2a and substituting, we find that the equation

2da2 −m2 = 3

has a solution. We also see that m is necessarily odd, so writing m = 2n+ 1
we obtain

da2 = 2(n2 + n+ 1)

which is what we seek. �
We can produce infinitely many examples of special cubic fourfolds with

Fano variety isomorphic to the symmetric square of a K3 surface:
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Theorem 6.1.5 Assume that d can be written

d = 2(n2 + n+ 1) n ≥ 2

where n is an integer. If X is a generic special cubic fourfold of discriminant
d then the Fano variety F is isomorphic to S[2], where S is a K3 surface
associated to (X,Kd).

This is proved in the next two sections. Note that the condition on d cor-
responds to setting a = 1 in previous proposition. This is a significant
restriction, e.g. d = 38 satisfies the hypotheses of the proposition but not
the hypotheses of the theorem. The ideas behind the proof strongly suggest
that the conditions stated in the proposition are the correct sufficient con-
ditions. Proving the theorem in this generality turns out to be technically
very awkward.

6.2 The Beauville/Debarre Construction and Ambigu-
ous Symplectic Varieties

We begin by giving a special case of a construction of Beauville and Debarre
described in [D]. Let S be a smooth quartic surface in P3. Let p1 + p2 be a
generic point in S[2], and let `(p1 + p2) be the line in P3 containing p1 and
p2. By Bezout’s theorem

`(p1 + p2) ∩ S = p1 + p2 + q1 + q2.

Setting j(p1 +p2) = q1 + q2 for each p1 +p2, we obtain a birational involution

j : S[2] 99K S[2].

If S contains no lines, then j is well-defined everywhere and extends to a
biregular morphism. If S contains a line `, then j is a birational map with
indeterminacy along the plane π ⊂ S[2] consisting of subschemes contained
in `. The map j induces an isomorphism

j∗ : H2(S[2],Z) → H2(S[2],Z).

Recall the direct sum decomposition

H2(S[2],Z) = H2(S,Z)⊕ Zδ
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and let f4 be the degree four polarization on S and the corresponding class
on S[2]. Following [D], one may compute

j∗(x) = −x+ (x, f4 − δ) (f4 − δ).

We now use F to denote the variety S[2]. One interpretation of our
construction is that F is the Hilbert scheme of length two subschemes of S
in two different ways. There are two distinct isomorphisms

r1, r2 : F → S[2]

where r2 = j ◦ r1. Recall that the divisor E1 = 2δ corresponds to the
subschemes of S supported at a single point and is isomorphic to P(TS),
the projectivization of the tangent bundle to S. In this case, the divisor
E2 = j∗(E1) = 2(2f4 − 3δ) also has this structure. To see this geometrically,
note that j maps the subschemes supported at p ∈ S into the g1

2 of the
hyperplane section of S tangent at p. This example suggests the following
definition:

Definition 6.2.1 Let F be an irreducible symplectic Kähler manifold, and
assume that there exist K3 surfaces S1 and S2 and isomorphisms

r1 : F → S
[2]
1

r2 : F → S
[2]
2

such that r∗1δ1 6= r∗2δ2. Then we say that F is ambiguous.

We digress to give a beautiful example of ambiguous varieties:

Proposition 6.2.2 Assume that 3|d and that the Fano variety F of a generic

cubic fourfold X in Cd is isomorphic to S
[2]
1 for some K3 surface S1. Then

F is ambiguous, so there exists a second K3 surface S2 such that F is also
isomorphic to S

[2]
2 . In particular, Clab

d corresponds to an open subset of a
Z/2Z-quotient of the moduli space of degree d K3 surfaces.

By Proposition 6.1.1 we obtain

id : Cmar
d → Nd
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which associates to a generic marked cubic fourfold the K3 surface S such
that the Fano variety is isomorphic to S[2]. Assume now that d is divisible
by three. By Proposition 5.3.1, the forgetting map

Cmar
d → Clab

d

has degree two. Hence for each labelled cubic fourfold of discriminant d, there
are two different K3 surfaces S1 and S2, with S

[2]
1 and S

[2]
2 both isomorphic to

the Fano variety F . Furthermore, id descends to a map from Clab
d to a Z/2Z

quotient of Nd. �
We may interpret this phenomenon in terms of monodromy. The decompo-
sition of the cohomology of these Fano varieties

H2(F,Z) ∼= H2(S1,Z)⊕ Zδ

is not respected by the monodromy group.
Recall the description of the deformation spaces of the varieties S[2] in

Theorem 6.1.2. We apply this to an ambiguous variety F , to show that
the deformations of F isomorphic to some S ′[2] correspond to two transverse
divisors in the deformation space of F . In the case where S is a quartic K3,
these are just the deformations for which δ or 2f4 − 3δ remain algebraic.

We sketch the construction of the examples of special cubic fourfolds with
Fano variety isomorphic to S[2], where S is a K3 surface. This will be made
precise in the following section. Assume one already knows that for the
generic cubic fourfold in Cd, the Fano variety F isomorphic to S[2] for some
K3 surface S. Specialize so that S contains an irreducible curve f4 such that
the linear system |f4| imbeds S as a smooth quartic K3 surface that does not
contain a line. The Fano variety F is then ambiguous, so the deformation
space contains two divisors parametrizing varieties of the form S ′[2]. One
of these divisors corresponds to deformations contained in Cd, and we claim
that the other corresponds to deformations contained in Cd′ for d′ 6= d. This
implies that Cd′ contains typical cubic fourfolds X ′ for which F ′ is isomorphic
to S ′[2]. We conclude that for a generic cubic X ′ ∈ Cd′ the Fano variety F ′ is
isomorphic to S ′[2] for some K3 surface.

6.3 Construction of the Examples

This section makes precise the argument of the previous section. We will
construct our ambiguous varieties along the divisor C̃6. The first step is to
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describe the Fano varieties of these singular cubics and natural desingular-
izations of them.

We begin by setting our notation. Let X0 be a singular cubic fourfold
with a single ordinary double point p and let F0 be its Fano variety of lines.
Let S be the sextic K3 surface associated to X0 (see § 4.2). Let φ : X → ∆ be
a family in C̃ with central fiber X0 and Xt smooth for t 6= 0. Let F → ∆ be
the corresponding family of Fano varieties, and let X ′ → ∆′ be a semistable
reduction of X → ∆. For simplicity, we assume that the central fiber of the
semistable family is of the form

X ′
0 = X0 ∪Q

where X0 = BlS(P4) is the desingularization of X0, Q is a smooth quadric
fourfold, and Q0 = X0 ∩ Q is the smooth quadric in P4 containing S. Our
assumptions on the form of the semistable reduction are valid if φ is a suffi-
ciently generic smoothing of X0, which is enough for our application.

We first prove the following lemma describing the singularities of F0:

Lemma 6.3.1 F0 is singular along the lines passing through the double point,
which are parametrized by the K3 surface S. These singularities are ordinary
codimension-two double points and the blow-up

σ : BlS F0 → F0

desingularizes F0. If S0 does not contain a line then BlS F0
∼= S[2].

The first part of the proposition follows from § 4.2 and [AK] 1.10. For the
second part, we realize σ by blowing-up the Grassmannian G(1, 5) along the
locus L(p) of lines containing p. The fiber square

S → F0

↓ ↓
L(p) → G(1, 5)

gives a natural closed imbedding of normal cones

CSF0 ↪→ CL(p)G(1, 5)|S.

The projectivized normal cone P(CL(p)G(1, 5)) corresponds to P(C6/S), where
S is the restriction of the universal subbundle. Each line ` ∈ L(p) may be
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regarded as a point ` ∈ P4; the corresponding fiber of the normal cone is
parametrized by the lines in P4 containing `. Now let ` be a singular point of
F0. The fiber of the projectivized normal cone P(CSF0) at ` corresponds to
the lines λ containing ` and contained in Q0. Since Q0 is a smooth quadric
threefold, these are parametrized by a smooth conic curve. We conclude
that F0 has codimension-two ordinary double points along S and BlS F0 is
smooth.

This description implies that we can regard BlS F0 as a parameter space
for certain curves on X0. These curves are of the following types:

1. Lines on X0 disjoint from p.

2. Unions of proper transforms of lines through p and lines contained in
Q0 ⊂ X0.

These in turn may be identified with:

1. Two-secants λ to S ⊂ P4.

2. Three-secants λ with a distinguished point s ∈ λ ∩ S.

We emphasize that each line meeting S in more than two points is contained
in Q0 but not in S (by hypothesis). Consequently, such lines are three-secants
to S. We claim elements of S[2] naturally correspond to curves of this type.
For each ideal sheaf I of colength two there is a unique line λ containing the
corresponding subscheme. Either λ is a two-secant, or λ is a three-secant
and s is the support of I/Iλ∩S. �

Applying the same argument to the family of Fano varieties gives the
following lemma:

Lemma 6.3.2 Retain the notation and assumptions introduced above. The
family of Fano varieties F×∆∆′ has ordinary codimension-three double points
along the surface S. The variety F ′ = BlS(F ×∆ ∆′) is smooth, and the
exceptional divisor E ⊂ F ′

0 is a smooth quadric surface bundle over S. The
component of F ′

0 dominating F0 is isomorphic to S[2].

We now prove our key result:
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Proposition 6.3.3 Retain the notation and assumptions introduced above.
Then there is a smooth family

F → ∆′

birational to F ×∆′, such that F u = Fu and F 0 = S[2].

We start with the family F ′ described in the previous lemma. The fibers
of E → S are all smooth quadric surfaces, so the variety parametrizing
rulings of E is an étale double cover of S. However, the K3 surface S has
no nontrivial étale coverings, so we may choose a ruling of E. We may blow
down E in the direction of this ruling to obtain a smooth family F . This
map induces an isomorphism from the proper transform of F0 in F ′

0 to the
central fiber of F . The proper transform to F0 in F ′

0 is isomorphic to S[2], so
F satisfies the conditions stipulated in the proposition. �

Now we complete the construction of the examples. Let S be an alge-
braic K3 surface with Picard group generated by classes f4 and f6 with the
intersection form

P =
f6 f4

f6 6 n+ 5
f4 n+ 5 4

and n ≥ 2. In § 4.3 we showed that such a surface exists and that we may
assume that |f6| imbeds it as a smooth sextic surface. The divisor f4 is
effective because it has positive degree with respect to f6. We claim that f4

is very ample. If f4 were not ample, then there would exist a −2 curve E
with f4E ≤ 0. This follows from the structure of the Kähler cone of S ([LP]
§1,§10). Note that f4E 6= 0 because P does not contain a rank-two sublattice
of discriminant −8. Recall that the Picard-Lefschetz reflection associated to
E is given by the equation rE(x) = x + (E, x)E. Applying this to the class
f4, we find that rE(f4)

2 = 4 and (f6, rE(f4)) < (f6, f4). Hence that f6 and
r(f4) span a sublattice with discriminant smaller than that of P , which is
impossible. Finally, applying Lemma 4.3.3 we see that the linear system |f4|
imbeds S as a smooth quartic surface.

Our hypothesis on P implies that the image of S under |f6| lies on a
smooth quadric hypersurface and does not contain a line, and that the image
of S under |f4| also does not contain a line. In particular, S corresponds to
a singular cubic fourfold X0 ∈ C̃6. Furthermore S[2] is ambiguous and there
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is an involution
j : S[2] → S[2]

so that
δ2 := j∗δ = 2f4 − 3δ.

Using the previous proposition and the arguments of § 4.3, there exists a
smoothing φ : X → ∆ of X0, such that after base change the corresponding
family of smooth symplectic varieties

F → ∆′

is a deformation of S[2] for which δ2 remains algebraic. By Theorem 6.1.2
the Fano variety Fu of X ′

u is isomorphic to S
[2]
u .

If we choose φ generally, we may assume that the X ′
u are typical and that

Pic(Su) is generated by the polarization f ′. Let Π denote Pic(Fu), which is
equal to Zf ′⊕Zδ2 in our case. This is a lattice with respect to the canonical
form of discriminant

disc(Π) = −2deg (Su). †

On the other hand, Π is the saturation of Zg + Zδ2. Specializing to S[2] we
can compute

Π = saturation
(
Zg + Zδ2

)
= saturation

(
Z(2f6 − 3δ) + Z(2f4 − 3δ)

)
= Z(2f6 − 3δ) + Z(f6 − f4)

with discriminant
disc(Π) = −4(n2 + n+ 1).‡

Combining † and ‡, we compute that the K3 surfaces Su have degree

d(n) = 2(n2 + n+ 1)

and the Xu are special of discriminant d(n). We conclude that for n > 1 the
Fano variety of a generic special cubic of discriminant d(n) is equal to S[2],
where S is a degree d(n) K3 surface. �

We should remark that we are actually proving a very weak version of
surjectivity of the Torelli map for the symplectic varieties that occur as Fano
varieties of cubic fourfolds. Specifically, the pure limiting Hodge structures
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parametrized by D6 actually arise from smooth symplectic varieties, i.e. the
varieties S[2] where S is a degree six K3 surface. This also explains the
computation of the limiting mixed Hodge structure H4

lim in § 4.2.
There are a number of ways these examples may be generalized. We need

not assume that the polarizations f6 and f4 actually generate the Picard
lattice P of S. Then the saturated lattice Π would not be equal to Z(2f6 −
3δ)+Z(f6− f4), but would contain it as a subgroup of finite index a. In this
situation, the discriminant would be equal to

d(n, a) = 2
n2 + n+ 1

a2
.

Unfortunately, not every integer of the form d(n, a) can be obtained in this
way, because every pair (n, a) arising from this construction satisfies

24 ≡ n2(mod a).

A second way to generalize this argument is to replace C̃6 by some other
divisor Cd parametrizing special cubic fourfolds whose Fano varieties are of
the form S[2]. We can try to repeat the argument given above, allowing the
K3 surfaces to acquire quartic polarizations. Making precise statements can
be quite difficult, because one needs explicit descriptions of two complicated
closed sets: the complement Dd\Cd (i.e. the K3 surfaces corresponding to
singular cubic fourfolds) and the locus in Cd where the isomorphism between
the Fano varieties and the blown-up symmetric squares breaks down. We
must exclude from our statements any ‘bad’ discriminants d′, such that Dd′∩
Dd lies entirely in these two closed subsets. Of course, if we are willing to
exclude unspecified lists of ‘bad’ discriminants, then we can avoid describing
these two sets. The computational complexity of the proof above reflects
the difficulty in solving these problems, even along C̃6 where the relevant K3
surface is easy to describe.

Finally, Mukai’s philosophy suggests that whenever we have an associ-
ated K3 surface S, the Fano variety F might be interpretted as a suitable
moduli space of simple sheaves on S. It would be interesting to find such
interpretations when F cannot be a blown-up symmetric square.

7 Notation

X a smooth cubic hypersurface in P5
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L the cohomology lattice H4(X,Z)

L0 the primitive cohomology H4(X,Z)

〈, 〉 the intersection forms on these lattices

h2 the square of the hyperplane class in L

F the Fano variety of lines on X

g the hyperplane class in M

M the cohomology group H2(F,Z)

M0 the primitive cohomology H2(F,Z)0

(, ) Beauville’s canonical form on M

α : L→M the Abel-Jacobi map

H the hyperbolic plane lattice =

(
0 1
1 0

)
E8 the positive definite even lattice associated to the Dynkin diagram E8

B the lattice B =

(
2 1
1 2

)
S a K3 surface

S[2] the Hilbert scheme of length two subschemes of S

2δ the divisor on S[2] corresponding to the subschemes supported at a single
point

Γ the automorphisms of L preserving the class h2

Γ+ an index-two subgroup of Γ

D′ the local period domain for cubic fourfolds

D = Γ+\D′ the global period domain for cubic fourfolds

C the moduli space of cubic fourfolds

τ : C ↪→ D the period map

T an algebraic surface in X not homologous to a complete intersection

A(X) = H2,2(X) ∩H4(X,Z) the lattice of algebraic classes

K a positive definite rank-two sublattice of L, containing the class h2

Γ+
K the subgroup of Γ+ stabilizing K

D′
K the Hodge structures for which K is contained in the lattice of algebraic
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classes

[K] the Γ+ orbit of K

D[K] the Hodge structures for which some lattice in the class [K] is contained
in the lattice of algebraic classes

C[K] the corresponding divisor of C
Dlab

[K]
∼= Γ+

K\D′
K the labelled special Hodge structures of type [K]

Clab
[K] the corresponding divisor of C
d(L) the discriminant group of a lattice

qL the Q/2Z-valued quadratic form on the discriminant group of an even
lattice

Cd the moduli space of special cubic fourfolds with discriminant d

Clab
d the labelled special cubic fourfolds of discriminant d

Kd the lattice of algebraic classes on a special labelled cubic fourfold of
discriminant d

K⊥
d the nonspecial cohomology lattice of discriminant d, i.e. the orthogonal

complement to Kd in L

WX,Kd
the nonspecial cohomology of (X,Kd), the complexification of K⊥

d in
H4(X,C)0

Λ0
d lattice isomorphic to the primitive cohomology of a degree d K3 surface

Λ lattice isomorphic to the middle cohomology of a K3 surface

N ′
d the local period domain for degree d K3 surfaces

Σd the subgroup ofAut(Λ) fixing a degree d polarization

Σ+
d an index-two subgroup of Σd

Nd = Σ+
d \N ′

d the global period domain

G+
d the subgroup of Γ+

d acting trivially on Kd

Dmar
d the marked special Hodge structures of discriminant d

Cmar
d the marked special cubic fourfolds of discriminant d

Isom(d(L), d(K)) the set of isomorphisms of the discriminant groups
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[V] Voisin, C., 1986, Théorème de Torelli pour les cubiques de P5, Invent.
math. 86, 577-601.

[Za] Zarhin, Y. , 1990, Algebraic cycles over cubic fourfolds, Boll. Un.
Mat. Ital. B (7), no. 4b, 833-847.

[Zu] Zucker, S., 1977, The Hodge conjecture for cubic fourfolds, Composi-
tio Math. 34, 199-209.

56


