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1. INTRODUCTION

Manin [Man93] proposed to study (uni)rationality of Fano threefolds
over nonclosed fields, in situations where geometric (uni)rationality is
known. In cases where the Picard group is generated by the canoni-
cal class, i.e., those of rank and index one, he assigned an ‘Exercise’
[Man93, p. 47] to explore the rationality of degree 12,16, 18, and 22.
See [TP99, p. 215] for a list of geometrically rational Fano threefolds of
rank one.

We have effective criteria for deciding the rationality of surfaces over
nonclosed fields — the relevant invariant is encoded in the Galois ac-
tion on the geometric Picard group. This invariant is trivial for Fano
threefolds considered above. Our main result is:

Theorem 1. Let X be a Fano threefold of degree 18 defined over a
field k of characteristic zero and admitting a k-rational point. Then X
is rational if and only if X admits a conic over k.

Here a conic means a geometrically connected curve of degree two —
possibly non-reduced or reducible.

Kuznetsov and Prokhorov [KP19] complete the study of rationality
for geometrically rational Fano threefolds of Picard rank one over non-
closed fields. In particular, they address the degree 16 case where —
assuming the existence of a rational point — rationality is equivalent to
the existence of a twisted cubic curve. For Fano threefolds of degrees
12 and 22, rationality holds if and only if there is a rational point.

A key step in the proof of the only if direction in Theorem 1 is
the analysis of torsors over intermediate Jacobians, as presented in
[HT19a, BW19]. The other direction uses deformation and specializa-
tion techniques. While much recent work on rationality has focused on
applications of specialization to show the failure of (stable) rationality
[Voils, CTP16, HKT16, Tot16, HPT18, Sch19, NS19, KT19], here we
use it to prove rationality, avoiding complicated case-by-case arguments
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for special geometric configurations; see Theorem 8. This technique was
also used to analyze rationality for cubic fourfolds [RS19].
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2. PROJECTION CONSTRUCTIONS

We work over a field k of characteristic zero.

Let X C P" be a smooth Fano threefold of Picard rank one, embed-
ded by the minimal very ample multiple of the anticanonical divisor.
Fix a center consisting of a point € X or a smooth curve £ C X and
consider the blowup ¢ : X — X along that center. Assume that

e — K is nef and big;
e there are no effective divisors D C X such that (—K)*-D = 0.

Then by [IP99, Lem. 4.1.1] there exists an n > 1 such that | — nK |
determines a birational morphism

o X =X

to a normal variety with (at worst) terminal singularities. The mor-
phism ¢’ is a small resolution and an isomorphism if and only if X" is
nonsingular; this happens precisely when X is also Fano.

After flopping rational curves as necessary, we obtain a model X+ of
X with semiample anticanonical class. Let x : X --» X denote the
induced flop, ¢ : X+ — Y the contraction of the other extremal ray

(which need not be birational), and ¢ : X --» Y the composed map
(cf. [IP99, (4.1.1)]):

(1) X---2-_5X+
Y\V

o X’ ¢

X---“ Ly

The contraction ¢’ may often be understood in terms of projections.
We suppose that X is anticanonically embedded and n = 1.

e Assume the center is a line £ C X. The induced rational map on
X may be interpreted as projection from ¢. Other lines incident
to ¢ are contracted by ¢'.
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e Assume the center is a point z € X. The anticanonical system
on X corresponds to anticanonical divisors on X with multiplic-
ity > 2 at x. The induced map ¢ may be interpreted as double
projection from z, i.e., projection from the tangent space at x.
Conics containing x are contracted by ¢'.

When we refer to m-fold projection along a point or curve, this means
imposing zeros of multiplicity m along the exceptional divisor of o.

For the remainder of this section, X denotes a smooth Fano threefold
of degree 18 over k.

2.1. Projection from lines. The variety of lines R;(X) is nonempty
and connected of pure dimension one [IP99, Prop. 4.2.2] and sweeps
out a divisor in X with class —3Kx [IP99, Th. 4.2.7]. For generic X,
Ry(X) is a smooth curve of genus ten [IP99, Th. 4.2.7]. If Ry(X) is
smooth then X admits no nonreduced conics [KPS18, Rem. 2.1.7].

Suppose that £ C X is a line. Then double projection along ¢ induces
a birational map as in Diagram (1)

X - Xt > Y,
where Y C P* is a smooth quadric hypersurface [IP99, Th. 4.3.3]. This
flops the three lines incident to ¢ and contracts a divisor
De|—-2Kgz, —3E"|

to a smooth curve C' C Y of degree seven and genus two.
Since Y admits a k-rational point it is rational over k; the same holds
true for X.

Proposition 2. If X is a Fano threefold of degree 18 admitting a line
over k then X 1is rational.

2.2. Projection from conics. We discuss the structure of the variety
Ry(X) of conics on X:
e Ry(X) is nonempty of pure dimension two [IP99, Th. 4.5.10].
e Ry(X) is geometrically isomorphic to the Jacobian of a genus
two curve C' [IMO7, Prop. 3] [KPS18, Th. 1.1.1].
e Through each point of X there pass finitely many conics [IP99,
Lem. 4.2.6]; indeed, through a generic such point we have nine
conics [Tak89, 2.8.1].
e Given a conic D C X, double projection along D induces a
fibration [IP99, Cor. 4.4.3,Th. 4.4.11]

X —-» Xt 4 p2

in conics with quartic degeneracy curve.
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2.3. Projection from points. We recall the results of Takeuchi [Tak89]

presented in [IP99, Th. 4.5.8]. Let X denote the blowup of X at z,
with exceptional divisor FE.

Proposition 3. Suppose we have a point x € X (k) and let X denote
the blowup of X at x. We assume that

e 1 does not lie on a line in X;
e there are no effective divisors D on X such that (K5)*- D = 0.

Then triple-projection from x gives a fibration
X -5 Xt 4 p
in sextic del Pezzo surfaces.

We offer a more detailed analysis of double projection from a point
x € X (k) not on a line. By [IP99, § 4.5] the projection morphism

(]; X P
is generically finite onto its image X and the Stein factorization
X4 x4%
yields a Fano threefold of genus six with canonical Gorenstein singular-
ities. The condition precluding effective divisors D with (K)*-D =0

means that ¢’ admits no exceptional divisors. The nontrivial fibers of
¢’ are all isomorphic to P'’s, with the following possible images in X:

(1) a conic in X through x;

(2) a quartic curve of arithmetic genus one in X, spanning a P?,
with a singularity of multiplicity two at x;

(3) asextic curve of arithmetic genus two in X, spanning a P4, with
a singularity of multiplicity three at x.

Moreover, if ¢’ does not contract any surfaces then the exceptional
divisor E over z is embedded in P as a Veronese surface.

The quartic curves on X with node at a fixed point x have expected
dimension 0. The sextic curves on X with transverse triple point at a
fixed point x have expected dimension —1. Indeed, we have:

Proposition 4. [IP99, Prop. 4.5.1] Retain the notation above. For a
generic x € X
e the quartic and sextic curves described above do not occur;
e ¢ is a small contraction;
e the rational map X --» X T factors as follows
(1) blow up the point x;
(2) flop the nine conics through x;
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e ¢ restricts to the proper transform ET of E as an elliptic fibra-
tion associated with cubics based at mine points.

3. UNIRATIONALITY CONSTRUCTIONS

In this section, we consider the following question inspired by [Man93,
p. 46]:

Question 5. Let X be a Fano threefold of degree 18 over k. Suppose
X (k) # 0. Is X is unirational over k?

From our perspective, unirationality is more delicate than rationality
as we lack a specialization theorem for smooth families in this context.
We cannot apply the theorem of [KT19] — as we do in the proof of
Theorem 8 — to reduce to configurations in general position.

The geometric constructions below highlight some of the issues that
arise.

3.1. Using a point.

Proposition 6. Let X be a Fano threefold of degree 18 over k admitting
a point x € X (k) satisfying the condition in Proposition 3. Then X is
unirational over k and rational points are Zariski dense.

Proof. We retain the notation from Proposition 3. Note that the proper
transforms of lines L C E™ give trisections of our del Pezzo fibration

¢: X+ — Pl
Basechanging to L yields
¢r: X" xp L — L,

a fibration of sextic del Pezzo surfaces with a section. Thus the generic
fiber of ¢y, is rational over k(L) by [Man66, p. 77]. Since L ~ P!, the
total space of the fibration is rational over k. As it dominates X *, we
conclude that X is unirational. O

If the rational points are Zariski dense then we can find one where
Proposition 3 applies. However, if we are given only a single rational
point on X we must make a complete analysis of degenerate cases as
partly described in Section 2.3. In addition, we must consider cases
where there exist lines over k passing through our given rational point.

For instance, consider the case where a single line x € £ C X. To
resolve the double projection at x, we must take the following steps:

e blow up z to obtain an exceptional divisor F; ~ P?;
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e blow up the proper transform ¢ of the line ¢ with
Ny = Op1(—1) ® Op1(—2)
to obtain an exceptional divisor Fy ~ [F.

Let E’} and denote the proper transform of E; in the second blowups.
The linear series resolving the double projection is

h—2F, — E,

which takes E] ~ F; to a cubic scroll, Fy to a copy of P2, and the
(—1)-curve on Ej to an ordinary singularity on the image. The induced
contraction
¢ X =X P’
has degree
(h — 2E] — E»)* = 10.

Thus X’ admits a ‘degenerate Veronese surface’ consisting of a cubic
scroll and a plane meeting along a line coinciding with the (—1)-curve
of the scroll; X’ has an ordinary singularity along that line.

Of course, the most relevant degenerate cases for arithmetic purposes
involve multiple lines through x conjugated over the ground field. It
would be interesting to characterize the possibilities.

3.2. Using a point and a conic. Here is another approach: Let X
admit a point x € X (k) and a conic D C X defined over k. The results
recalled in Section 2.2 imply that X is birational over k to

O : Xt = P?,
a conic bundle degenerating over a plane quartic curve B.

Suppose there exists a rational point on X+ whose image p € P2
is not contained in the degeneracy curve. Consider the pencil of lines
through p. The corresponding pencil of surfaces on X are conic bun-
dles over P! with four degenerate fibers and the resulting fibration
admits a section. Such a surface is either isomorphic to a quartic del
Pezzo surface or birational to such a surface [KST89, p. 48]. It is a
classical fact that a quartic del Pezzo surface with a rational point is
unirational.

The argument works even when p is a smooth point or node of B.
Here we necessarily have higher-order ramification over the nodes — this
is because the associated generalized Prym variety is compact — which
we can use to produce a section of the resulting pencil of degenerate

quartic del Pezzo surfaces. However, there is trouble when p is a cusp
of B.
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4. RATIONALITY RESULTS

Our first statement describes the rationality construction under fa-
vorable genericity assumptions:

Proposition 7. Let X be a Fano threefold of degree 18 over k. Assume
that:

e there exists an v € X (k) satisfying the conditions of Proposi-

tion 3 so X s birational to a fibration ¢ : X+ — P! in sextic
del Pezzo surfaces;
e there exists an irreducible curve M C X, disjoint from the in-

determinacy of X --» )2*, with degree prime to three.

Then X 1is rational over k.

Proof. We saw in the proof of Proposition 6 that the generic fiber S of
¢ is a sextic del Pezzo surface admitting a rational point of a degree-
three extension. Our assumptions imply that S - M = deg(M) which
is prime to three so applying [Man66, p. 77] we conclude that S is
rational over k(P') and X is rational over the ground field. U

We now show these genericity assumptions are not necessary:

Theorem 8. Let X be a Fano threefold of degree 18 over k. Assume
that X admits a rational point x and a conic D, both defined over k.
Then X s rational.

Proof. Let B denote the Hilbert scheme of all triples (X, z, D) of ob-
jects described in the statement. This is smooth and connected over
the moduli stack of degree 18 Fano threefolds; indeed, we saw in Sec-
tion 2.2 that the parameter space of conics on X is an abelian surface.
The moduli stack itself is a smooth Deligne-Mumford stack since Ko-
daira vanishing gives H(Tx) = 0 for i = 2,3 and H°(Tx) = 0 by
[Pro90]. The classification of Fano threefolds shows that the moduli
stack is connected. Thus B is smooth and connected.
Consider the universal family

(X 5 B,x:B— X,DCX),

where 7 is smooth and projective. The generic fiber of 7 is rational over
k(B) as the genericity conditions of Proposition 7 are tautologically
satisfied — see Proposition 4 for details. The specialization theorem
[KT19, Th. 1] implies that every k-fiber of 7 is rational over k. This
theorem assumes the base is a curve. However, our parameter space
B is smooth so Bertini’s Theorem implies that each b € B(k) may be
connected to the generic point by a curve smooth at b. 0
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5. ANALYSIS OF PRINCIPAL HOMOGENEOUS SPACES

5.1. Proof of Theorem 1. One direction is Theorem 8; we focus on
the converse. Suppose that X is rational over the ground field. Let
C' be the genus two curve whose Jacobian J(C') is isomorphic to the
intermediate Jacobian IJ(X) over k. The mechanism of [HT19a, § 5]
gives a principal homogeneous space P over J(C) with the property
that the Hilbert scheme H,; parametrizing irreducible curves of degree
d admits a morphism

Hd-)Pd

descending the Abel-Jacobi map to k, where [P;] = d[P] in the Weil-
Chatelet group of J(C'). By Theorem 22 of [HT19al, if X is rational
then P ~ Pic'(C) for i = 0 or 1. In particular, we have

R(X)— P
and by the known results of Section 2.2
Ry(X) ~ Py~ J(CO).
Indeed, since C' has genus two we have identifications
J(C) = Pic’(C) ~ Pic*(C),
which gives the desired interpretation of P, whether P = Pic’(C) or

Pic'(C). As a consequence, Ry(X) admits a k-rational point.

5.2. A corollary to Theorem 1. Retain the notation of the previous
section. Without assumptions on the existence of points or conics on
X defined over k, we know that

18[P] =0 and 9[R2(X)] =0

in the Weil-Chatelet group. This allows us to deduce an extension of
our main result:

Corollary 9. Let X be Fano threefold of degree of degree 18 over k
with X (k) # 0. Suppose that X admits a curve of degree prime to
three, defined over k. Then X is rational.

Our assumption means that 2[P] = 0, whence [Ry(X)] = 0 and X
admits a conic defined over k. Hence Theorem 1 applies.

5.3. Generic behavior. There are examples over function fields where
the principal homogeneous space is not annihilated by two:

Proposition 10. Over k = C(P?), there exist examples of X such that
the order of [P] is divisible by three.
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Proof. Let S be a complex K3 surface with Pic(S) = Zh where h? = 18.
Mukai [Muk88] has shown that S arises as a codimension-three linear
section of a homogeneous space W C P!3 arising as the closed orbit for
the adjoint representation of Gy

S=POoNW
Consider the associated net of Fano threefolds
w: X — P?

obtained by intersecting W with codimension-two linear subspaces
]P)IO C ]Pgll C PIS.
Write X for the generic fiber over C(P?).
Let Ro(X/P?) denote the relative variety of conics. This was ana-

lyzed in [IMO07, § 3.1]: The conics in fibers of @ cut out pairs of points
on S, yielding a birational identification and natural abelian fibration

S %5 Ry(x/P?) 5 P,

The corresponding principal homogeneous space has order divisible by
nine; its order is divisible by three if it is nontrivial.

These fibrations are analyzed in more depth in [MSTVA17, § 3.3]
and [KR13|. Let T denote the moduli space of rank-three stable vector
bundles V' on S with ¢; (V) = h and x(V) = 6. Then we have

e T is a K3 surface of degree two;
e the primitive cohomology of S arises as an index-three sublat-
tice of the primitive cohomology of T’

HZ(S, Z)pm‘m C H2 (T, Z)pm‘ma

compatibly with Hodge structures;
e the Hilbert scheme T is birational to the relative Jacobian
fibration of the degree-two linear series on T’
J — P
e the relative Jacobian fibration of v is birational to J over P2
The last statement follows from [Saw07, p. 486] or [Mar(06, § 4]: The
abelian fibration v is realized as a twist of the fibration J — P?;
the twisting data is encoded by an element o € Br(7)[3] annihilating
H?(S,Z)prim modulo three.

Now suppose that ¢ had a section. Then J and S® would be bira-
tional holomorphic symplectic varieties. The Torelli Theorem implies
that their transcendental degree-two cohomology — H?(T,Z)mim and
H?(S, Z) prim respectively — are isomorphic. This contradicts our com-
putation above. O
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5.4. Connections with complete intersections? Assume £ is alge-
braically closed and X a Fano threefold of degree 18 over k. Kuznetsov,
Prokhorov, and Shramov [KPS18] have pointed out the existence of a
smooth complete intersection of two quadrics Y C P> with

(2) Ri(Y) ~ Ry(X),

Both have intermediate Jacobian isomorphic to the Jacobian of a genus
two curve C'.

Now suppose that X and Y are defined over a nonclosed field k with
IJ(X) ~I1J(Y). In general, we would not expect Ry(X) and R;(Y') to
be related as principal homogeneous spaces; for example, we generally
have 9[R2(X)] = 0 and 4[R;(Y")] = 0 (see [HT19b]).

Verra [Ver18] has found a direct connection between complete inter-
sections of quadrics and singular Fano threefolds of degree 18. Suppose
we have a twisted cubic curve

RCY CP’,

which forces Y to be rational. Consider the linear series of quadrics
vanishing along R; the resulting morphism

Blg(Y) — P!

collapses the line residual to R in span(R)NY". Its image X is a nodal
Fano threefold of degree 18.
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