\begin{thebibliography}{KKMSD73} \bibitem[A'C75]{AC} Norbert A'Campo. \newblock La fonction z\^eta d'une monodromie. \newblock {\em Comment. Math. Helv.}, 50:233--248, 1975. \bibitem[Add17]{Adding} Nicolas Addington. \newblock The {B}rauer group is not a derived invariant. \newblock In {\em Brauer groups and obstruction problems: moduli spaces and arithmetic}, volume 320 of {\em Progr. Math.}, pages 1--5. Birkh\"auser/Springer, New York, 2017. \bibitem[ADPZ17]{ADPZ} Kenneth Ascher, Krishna Dasaratha, Alexander Perry, and Rong Zhou. \newblock Derived equivalences and rational points of twisted {$K3$} surfaces. \newblock In {\em Brauer groups and obstruction problems: moduli spaces and arithmetic}, volume 320 of {\em Progr. Math.}, pages 13--28. Birkh\"auser/Springer, New York, 2017. \bibitem[AKW14]{AKW} Benjamin Antieau, Daniel Krashen, and Matthew Ward. \newblock Derived categories of torsors for abelian schemes, 2014. \newblock arXiv:1409.2580. \bibitem[Art74]{Artin} Michael Artin. \newblock Algebraic construction of {B}rieskorn's resolutions. \newblock {\em J. Algebra}, 29:330--348, 1974. \bibitem[Art77]{Artin2} Michael Artin. \newblock Coverings of the rational double points in characteristic {$p$}. \newblock In {\em Complex analysis and algebraic geometry}, pages 11--22. Iwanami Shoten, Tokyo, 1977. \bibitem[Ati57]{Atiyah} Michael~F. Atiyah. \newblock Vector bundles over an elliptic curve. \newblock {\em Proc. London Math. Soc. (3)}, 7:414--452, 1957. \bibitem[BM02]{BrMa} Tom Bridgeland and Antony Maciocia. \newblock Fourier-{M}ukai transforms for {$K3$} and elliptic fibrations. \newblock {\em J. Algebraic Geom.}, 11(4):629--657, 2002. \bibitem[BM14]{BM2} Arend Bayer and Emanuele Macr{\`{\i}}. \newblock M{MP} for moduli of sheaves on {K}3s via wall-crossing: nef and movable cones, {L}agrangian fibrations. \newblock {\em Invent. Math.}, 198(3):505--590, 2014. \bibitem[BMT14]{BM1} Arend Bayer, Emanuele Macr{\`{\i}}, and Yukinobu Toda. \newblock Bridgeland stability conditions on threefolds {I}: {B}ogomolov-{G}ieseker type inequalities. \newblock {\em J. Algebraic Geom.}, 23(1):117--163, 2014. \newblock arXiv:1203.4613. \bibitem[Bri71]{Bries} E.~Brieskorn. \newblock Singular elements of semi-simple algebraic groups. \newblock In {\em Actes du {C}ongr\`es {I}nternational des {M}ath\'ematiciens ({N}ice, 1970), {T}ome 2}, pages 279--284. Gauthier-Villars, Paris, 1971. \bibitem[Bri98]{BrCrelle} Tom Bridgeland. \newblock Fourier-{M}ukai transforms for elliptic surfaces. \newblock {\em J. Reine Angew. Math.}, 498:115--133, 1998. \bibitem[Bri07]{Br1} Tom Bridgeland. \newblock Stability conditions on triangulated categories. \newblock {\em Ann. of Math. (2)}, 166(2):317--345, 2007. \bibitem[BV04]{BV} Arnaud Beauville and Claire Voisin. \newblock On the {C}how ring of a {$K3$} surface. \newblock {\em J. Algebraic Geom.}, 13(3):417--426, 2004. \bibitem[C{\u{a}}l00]{CalThe} Andrei~Horia C{\u{a}}ld{\u{a}}raru. \newblock {\em Derived categories of twisted sheaves on {C}alabi-{Y}au manifolds}. \newblock ProQuest LLC, Ann Arbor, MI, 2000. \newblock Thesis (Ph.D.)--Cornell University. \bibitem[CEZGT14]{CEGT} Eduardo Cattani, Fouad El~Zein, Phillip~A. Griffiths, and L{\^e}~D{\~u}ng Tr{\'a}ng, editors. \newblock {\em Hodge theory}, volume~49 of {\em Mathematical Notes}. \newblock Princeton University Press, Princeton, NJ, 2014. \bibitem[Fri83]{Friedman} Robert Friedman. \newblock Base change, automorphisms, and stable reduction for type {${\rm III}\,K3$} surfaces. \newblock In {\em The birational geometry of degenerations ({C}ambridge, {M}ass., 1981)}, volume~29 of {\em Progr. Math.}, pages 277--298. Birkh\"auser Boston, Mass., 1983. \bibitem[Fri84]{FriedAnnals} Robert Friedman. \newblock A new proof of the global {T}orelli theorem for {$K3$} surfaces. \newblock {\em Ann. of Math. (2)}, 120(2):237--269, 1984. \bibitem[FS85]{FriSca} Robert Friedman and Francesco Scattone. \newblock Type {${\rm III}$} degenerations of {$K3$} surfaces. \newblock {\em Invent. Math.}, 83(1):1--39, 1985. \bibitem[HLOY04a]{HLOY3} Shinobu Hosono, Bong~H. Lian, Keiji Oguiso, and Shing-Tung Yau. \newblock Autoequivalences of derived category of a {$K3$} surface and monodromy transformations. \newblock {\em J. Algebraic Geom.}, 13(3):513--545, 2004. \bibitem[HLOY04b]{HLOY} Shinobu Hosono, Bong~H. Lian, Keiji Oguiso, and Shing-Tung Yau. \newblock Fourier-{M}ukai number of a {K}3 surface. \newblock In {\em Algebraic structures and moduli spaces}, volume~38 of {\em CRM Proc. Lecture Notes}, pages 177--192. Amer. Math. Soc., Providence, RI, 2004. \bibitem[Hon15]{Honigs} Katrina Honigs. \newblock Derived equivalent surfaces and abelian varieties, and their zeta functions. \newblock {\em Proc. Amer. Math. Soc.}, 143(10):4161--4166, 2015. \bibitem[HS06]{HuSt} Daniel Huybrechts and Paolo Stellari. \newblock Proof of {C}\u ald\u araru's conjecture. {A}ppendix: ``{M}oduli spaces of twisted sheaves on a projective variety'' [in {\it {m}oduli spaces and arithmetic geometry}, 1--30, {M}ath. {S}oc. {J}apan, {T}okyo, 2006; ] by {K}. {Y}oshioka. \newblock In {\em Moduli spaces and arithmetic geometry}, volume~45 of {\em Adv. Stud. Pure Math.}, pages 31--42. Math. Soc. Japan, Tokyo, 2006. \bibitem[Huy08]{HuyJAG08} Daniel Huybrechts. \newblock Derived and abelian equivalence of {$K3$} surfaces. \newblock {\em J. Algebraic Geom.}, 17(2):375--400, 2008. \bibitem[Huy10]{HuyEMS} Daniel Huybrechts. \newblock Chow groups of {K}3 surfaces and spherical objects. \newblock {\em J. Eur. Math. Soc. (JEMS)}, 12(6):1533--1551, 2010. \bibitem[Huy12a]{HuyMSRI} Daniel Huybrechts. \newblock Chow groups and derived categories of {K}3 surfaces. \newblock In {\em Current developments in algebraic geometry}, volume~59 of {\em Math. Sci. Res. Inst. Publ.}, pages 177--195. Cambridge Univ. Press, Cambridge, 2012. \bibitem[Huy12b]{HuySur} Daniel Huybrechts. \newblock A global {T}orelli theorem for hyperk\"ahler manifolds [after {M}. {V}erbitsky]. \newblock {\em Ast\'erisque}, (348):Exp. No. 1040, x, 375--403, 2012. \newblock S{\'e}minaire Bourbaki: Vol. 2010/2011. Expos{\'e}s 1027--1042. \bibitem[Huy16]{HuyK3} Daniel Huybrechts. \newblock {\em Lectures on {$K3$} surfaces}, volume 158 of {\em Cambridge Studies in Advanced Mathematics}. \newblock Cambridge University Press, 2016. \bibitem[HVA13]{HVA2} Brendan Hassett and Anthony V{\'a}rilly-Alvarado. \newblock Failure of the {H}asse principle on general {$K3$} surfaces. \newblock {\em J. Inst. Math. Jussieu}, 12(4):853--877, 2013. \bibitem[HVAV11]{HVA1} Brendan Hassett, Anthony V{\'a}rilly-Alvarado, and Patrick Varilly. \newblock Transcendental obstructions to weak approximation on general {K}3 surfaces. \newblock {\em Adv. Math.}, 228(3):1377--1404, 2011. \bibitem[KKMSD73]{KKMS} George Kempf, Finn~Faye Knudsen, D.~Mumford, and Bernard Saint-Donat. \newblock {\em Toroidal embeddings. {I}}. \newblock Lecture Notes in Mathematics, Vol. 339. Springer-Verlag, Berlin, 1973. \bibitem[KM92]{KaMo} Sheldon Katz and David~R. Morrison. \newblock Gorenstein threefold singularities with small resolutions via invariant theory for {W}eyl groups. \newblock {\em J. Algebraic Geom.}, 1(3):449--530, 1992. \bibitem[KM98]{KM} J{\'a}nos Koll{\'a}r and Shigefumi Mori. \newblock {\em Birational geometry of algebraic varieties}, volume 134 of {\em Cambridge Tracts in Mathematics}. \newblock Cambridge University Press, Cambridge, 1998. \newblock With the collaboration of C. H. Clemens and A. Corti, Translated from the 1998 Japanese original. \bibitem[Kul77]{Kulikov} Viktor~S. Kulikov. \newblock Degenerations of {$K3$} surfaces and {E}nriques surfaces. \newblock {\em Izv. Akad. Nauk SSSR Ser. Mat.}, 41(5):1008--1042, 1199, 1977. \bibitem[Kul89]{Kuleshov} Sergej~A. Kuleshov. \newblock A theorem on the existence of exceptional bundles on surfaces of type {$K3$}. \newblock {\em Izv. Akad. Nauk SSSR Ser. Mat.}, 53(2):363--378, 1989. \bibitem[Kul90]{Kuleshov2} Sergej~A. Kuleshov. \newblock Exceptional bundles on {$K3$} surfaces. \newblock In {\em Helices and vector bundles}, volume 148 of {\em London Math. Soc. Lecture Note Ser.}, pages 105--114. Cambridge Univ. Press, Cambridge, 1990. \bibitem[Lan73]{Landman} Alan Landman. \newblock On the {P}icard-{L}efschetz transformation for algebraic manifolds acquiring general singularities. \newblock {\em Trans. Amer. Math. Soc.}, 181:89--126, 1973. \bibitem[LO15]{LO} Max Lieblich and Martin Olsson. \newblock Fourier-{M}ukai partners of {K}3 surfaces in positive characteristic. \newblock {\em Ann. Sci. \'Ec. Norm. Sup\'er. (4)}, 48(5):1001--1033, 2015. \bibitem[Mar10]{Markman2010} Eyal Markman. \newblock Integral constraints on the monodromy group of the hyper{K}\"ahler resolution of a symmetric product of a {$K3$} surface. \newblock {\em Internat. J. Math.}, 21(2):169--223, 2010. \bibitem[Mat15]{Mat} Yuya Matsumoto. \newblock Good reduction criterion for {K}3 surfaces. \newblock {\em Math. Z.}, 279(1-2):241--266, 2015. \bibitem[ML14]{LieMat} Yuya Matsumoto and Christian Liedtke. \newblock Good reduction of {$K3$} surfaces, 2014. \newblock arXiv:1411.4797. \bibitem[MM83]{MiMo} Rick Miranda and David~R. Morrison. \newblock The minus one theorem. \newblock In {\em The birational geometry of degenerations ({C}ambridge, {M}ass., 1981)}, volume~29 of {\em Progr. Math.}, pages 173--259. Birkh\"auser Boston, Boston, MA, 1983. \bibitem[Mor84]{Morrison} David~R. Morrison. \newblock The {C}lemens-{S}chmid exact sequence and applications. \newblock In {\em Topics in transcendental algebraic geometry ({P}rinceton, {N}.{J}., 1981/1982)}, volume 106 of {\em Ann. of Math. Stud.}, pages 101--119. Princeton Univ. Press, Princeton, NJ, 1984. \bibitem[MSTVA17]{MSTVA} Kelly McKinnie, Justin Sawon, Sho Tanimoto, and Anthony V\'arilly-Alvarado. \newblock Brauer groups on {K}3 surfaces and arithmetic applications. \newblock In {\em Brauer groups and obstruction problems: moduli spaces and arithmetic}, volume 320 of {\em Progr. Math.}, pages 177--218. Birkh\"auser/Springer, New York, 2017. \bibitem[Muk87]{Mukai} Shigeru Mukai. \newblock On the moduli space of bundles on {$K3$} surfaces. {I}. \newblock In {\em Vector bundles on algebraic varieties ({B}ombay, 1984)}, volume~11 of {\em Tata Inst. Fund. Res. Stud. Math.}, pages 341--413. Tata Inst. Fund. Res., Bombay, 1987. \bibitem[Nic11]{Nicaise} Johannes Nicaise. \newblock A trace formula for varieties over a discretely valued field. \newblock {\em J. Reine Angew. Math.}, 650:193--238, 2011. \bibitem[Nik79]{Nik79} Viacheslav~V. Nikulin. \newblock Integer symmetric bilinear forms and some of their geometric applications. \newblock {\em Izv. Akad. Nauk SSSR Ser. Mat.}, 43(1):111--177, 238, 1979. \bibitem[Nik08]{Nik08} Viacheslav~V. Nikulin. \newblock On connected components of moduli of real polarized {$K3$} surfaces. \newblock {\em Izv. Ross. Akad. Nauk Ser. Mat.}, 72(1):99--122, 2008. \bibitem[Ogu02]{Oguiso} Keiji Oguiso. \newblock K3 surfaces via almost-primes. \newblock {\em Math. Res. Lett.}, 9(1):47--63, 2002. \bibitem[Orl97]{Orlov} Dmitri~O. Orlov. \newblock Equivalences of derived categories and {$K3$} surfaces. \newblock {\em J. Math. Sci. (New York)}, 84(5):1361--1381, 1997. \newblock Algebraic geometry, 7. \bibitem[PP81]{PerPin} Ulf Persson and Henry Pinkham. \newblock Degeneration of surfaces with trivial canonical bundle. \newblock {\em Ann. of Math. (2)}, 113(1):45--66, 1981. \bibitem[P{\v{S}}{\v{S}}71]{PSSh} I.~I. Pjatecki{\u\i}-{\v{S}}apiro and I.~R. {\v{S}}afarevi{\v{c}}. \newblock Torelli's theorem for algebraic surfaces of type {${\rm K}3$}. \newblock {\em Izv. Akad. Nauk SSSR Ser. Mat.}, 35:530--572, 1971. \bibitem[Rei83]{Reid83} Miles Reid. \newblock Minimal models of canonical {$3$}-folds. \newblock In {\em Algebraic varieties and analytic varieties ({T}okyo, 1981)}, volume~1 of {\em Adv. Stud. Pure Math.}, pages 131--180. North-Holland, Amsterdam, 1983. \bibitem[SB83]{ShB} Nicholas~I. Shepherd-Barron. \newblock Extending polarizations on families of {$K3$} surfaces. \newblock In {\em The birational geometry of degenerations ({C}ambridge, {M}ass., 1981)}, volume~29 of {\em Progr. Math.}, pages 135--171. Birkh\"auser Boston, Mass., 1983. \bibitem[SD74]{SD} B.~Saint-Donat. \newblock Projective models of {$K3$} surfaces. \newblock {\em Amer. J. Math.}, 96:602--639, 1974. \bibitem[Sos10]{Sosna} Pawel Sosna. \newblock Derived equivalent conjugate {$K3$} surfaces. \newblock {\em Bull. Lond. Math. Soc.}, 42(6):1065--1072, 2010. \bibitem[Ste04]{Stellari04} Paolo Stellari. \newblock Some remarks about the {FM}-partners of {$K3$} surfaces with {P}icard numbers 1 and 2. \newblock {\em Geom. Dedicata}, 108:1--13, 2004. \bibitem[Ver13]{Verb} Misha Verbitsky. \newblock Mapping class group and a global {T}orelli theorem for hyperk\"ahler manifolds. \newblock {\em Duke Math. J.}, 162(15):2929--2986, 2013. \newblock Appendix A by Eyal Markman. \end{thebibliography}