\begin{thebibliography}{CTP16b} \bibitem[Bea15]{Beau-AG} Arnaud Beauville. \newblock A very general quartic double fourfold or fivefold is not stably rational. \newblock {\em Algebr. Geom.}, 2(4):508--513, 2015. \bibitem[Bea16a]{Beau-AG-E} Arnaud Beauville. \newblock Erratum: A very general quartic double fourfold or fivefold is not stably rational (algebraic geometry 2, no. 4 (2015), 508-513). \newblock {\em Algebr. Geom.}, 3(1):137--137, 2016. \bibitem[Bea16b]{beau-6} Arnaud Beauville. \newblock A very general sextic double solid is not stably rational. \newblock {\em Bull. Lond. Math. Soc.}, 48(2):321--324, 2016. \newblock {\tt arXiv:1411.7484}. \bibitem[CTP16a]{ct-pir-cyclic} Jean-Louis Colliot-Th\'el\`ene and Alena Pirutka. \newblock Cyclic covers that are not stably rational. \newblock {\em Izvestiya RAN, Ser. Math.}, 80(4), 2016. \newblock {\tt arXiv:1506.0042v2}. \bibitem[CTP16b]{ct-pirutka} Jean-Louis Colliot-Th\'el\`ene and Alena Pirutka. \newblock Hypersurfaces quartiques de dimension 3 : non rationalit\'e stable. \newblock {\em Ann. Sci. ENS}, 49(2):735--801, 2016. \bibitem[GM88]{GM} Mark Goresky and Robert MacPherson. \newblock {\em Stratified {M}orse theory}, volume~14 of {\em Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]}. \newblock Springer-Verlag, Berlin, 1988. \bibitem[HPT16]{HPT} Brendan Hassett, Alena Pirutka, and Yuri Tschinkel. \newblock Stable rationality quadric surface bundles over surfaces, 2016. \newblock {\tt arXiv:1603.09262}. \bibitem[Oka16]{okada} Takuzo Okada. \newblock Stable rationality of cyclic covers of projective spaces, 2016. \newblock {\tt arXiv:1604.08417}. \bibitem[Pir16]{pirutka-survol} Alena Pirutka. \newblock Varieties that are not stably rational, zero-cycles and unramified cohomology, 2016. \newblock {\tt arXiv:1603.09261}. \bibitem[Tot16]{totaro-JAMS} Burt Totaro. \newblock Hypersurfaces that are not stably rational. \newblock {\em J. Amer. Math. Soc.}, 29(3):883--891, 2016. \bibitem[Voi15a]{voisin-stable} Claire Voisin. \newblock ({S}table) rationality is not deformation invariant, 2015. \newblock {\tt arXiv:1511.03591}. \bibitem[Voi15b]{Voisin} Claire Voisin. \newblock Unirational threefolds with no universal codimension {$2$} cycle. \newblock {\em Invent. Math.}, 201(1):207--237, 2015. \end{thebibliography}