On the effective cone of the moduli space of pointed rational
curves

Brendan Hassett and Yuri Tschinkel

ABSTRACT. We compute the effective cone of the moduli space of stable curves
of genus zero with six marked points.

1. Introduction

For a smooth projective variety, Kleiman’s criterion for ample divisors states
that the closed ample cone (i.e., the nef cone) is dual to the closed cone of effective
curves. Since the work of Mori, it has been clear that extremal rays of the cone
of effective curves play a special role in birational geometry. These correspond to
certain distinguished supporting hyperplanes of the nef cone which are negative with
respect to the canonical class. Contractions of extremal rays are the fundamental
operations of the minimal model program.

Fujita [F] has initiated a dual theory, with the (closed) cone of effective divi-
sors playing the central role. It is natural then to consider the dual cone and its
generators. Those which are negative with respect to the canonical class are called
coextremal rays, and have been studied by Batyrev [Ba]. They are expected to
play a fundamental role in Fujita’s program of classifying fiber-space structures on
polarized varieties.

There are relatively few varieties for which the extremal and coextremal rays
are fully understood. Recently, moduli spaces of pointed rational curves Mg,
have attracted considerable attention, especially in connection with mathematical
physics and enumerative geometry. Keel and McKernan first considered the ‘Fulton
conjecture’: The cone of effective curves of ngn is generated by one-dimensional
boundary strata. This is proved for n < 7 [KeMc]. The analogous statement for
divisors, namely, that the effective cone of Mg’n is generated by boundary divisors,
is known to be false ([Ke] and [Ve]). The basic idea is to consider the map

T MO’QQ ‘_)Mw n = 2g,

identifying pairs (i142), (i3i4), - . ., (i2g—1924) of marked points to nodes. There exist

effective divisors in M restricting to effective divisors not spanned by boundary
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divisors (see Remark 4.2). However, it is true that for each n the cones of &,-
invariant effective divisors are generated by boundary divisors [KeMc].

In recent years it has become apparent that various arithmetic questions about
higher dimensional algebraic varieties defined over number fields are also closely
related to the cone of effective divisors. For example, given a variety X over a
number field F', a line bundle L in the interior of NE'(X), an open U C X over
which LN(N > 0) is globally generated, and a height H, associated to some
adelic metrization £ of L, we can consider the asymptotic behavior of the counting
function

N(U,L,B) =#{z € U(F)|Hc(x) < B} B>0.
There is a heuristic principle that, after suitably restricting U,
N(U, L, B) = e(£) B log(B)" D)~ 1(1 + o(1)),
as B — oo (see [BT]). Here
a(L) :=inf{a € R|al + Kx € NE*(X)},

b(L) is the codimension of the face of NE' (X) containing a(L)L+Kx (provided that
NE'(X) is locally polyhedral at this point), and ¢(£) > 0 is a constant depending
on the chosen height (see [BM] and [BT] for more details). Notice that the explicit
determination of the constant ¢(£) also involves the knowledge of the effective cone.

Such asymptotic formulas can be proved for smooth complete intersections in
P™ of small degree using the classical circle method in analytic number theory
and for varieties closely related to linear algebraic groups, like flag varieties, toric
varieties etc., using adelic harmonic analysis ([BT] and references therein). No gen-
eral techniques to treat arbitrary varieties with many rational points are currently
available. To our knowledge, the only other variety for which such an asymptotic
is known to hold is the moduli space M5 (Del Pezzo surface of degree 5) in its
anticanonical embedding [dB]. Upper and lower bounds, with the expected a(L)
and b(L), are known (see [VW]) for the Segre cubic threefold

5 5
Seg:{(mg,...,%):z.r?: zj = 0}.

j=0 j=0
This admits an explicit resolution by the moduli space Mg ¢ (Remark 3.1); see [Hu]
for the relationship between the Segre cubic and moduli spaces.

Our main result (Theorem 5.1) is a computation of the effective cone of Mg g.
Besides the boundary divisors, the generators are the loci in M ¢ fixed under

o = (leZ)(ZSZ4)(Z516) € 66: {i1:i2zi37i4:i57i6} = {172:374:576}'

This equals the closure of 7*h N My g, where b is the hyperelliptic locus in Mj.
The effective and moving cones of M3 are studied in detail by Rulla [Ru]. Rulla’s
inductive analysis of the moving cone is similar to the method outlined in Section 2.
Results on the ample cone of My have been recently obtained by Farkas and
Gibney [FG].

The arithmetic consequences of Theorem 5.1 will be addressed in a future paper.
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2. Generalities on effective cones

Let X be a nonsingular projective variety with Néron-Severi group NS(X) and
group of one-cycles Ny (X). The closed effective cone of X is the closed convex cone

NE'(X) c NS(X)® R

generated by effective divisors on X. Let NM;(X) be the dual cone NE'(X)* in
N;(X) ® R. Similarly, let NE;(X) be the cone of effective curves and NM* (X) its
dual, the nef cone.

We review one basic strategy, used in Section 5, for computing NE' (X). Sup-
pose we are given a collection I' = {A;,..., A,,} of effective divisors that we expect

to generate the effective cone and a subset ¥ C T'. For any effective divisor F, we
have a decomposition

E = My, + By, BZ:a1A1—|—...—|—amAm, ajZO,

where By is the fixed part of |E| supported in ¥. The divisor My may have fixed
components, but they are not contained in ¥. Let Mov(X)y denote the closed
cone generated by effective divisors without fixed components in 3. To show that
I generates NE' (X) it suffices to show that it generates Mov(X)y,. Any divisor of
Mov(X)sy, restricts to an effective divisor on each A; € ¥. Consequently,

Mov(X)sy; € NM; (2, X)*,

where NM; (2, X)) C Ny (X) is generated by the images of the NM; (4;) and 4; € X.
To prove that T' generates NE'(X), it suffices then to check that

{cone generated by I'}* C NM; (X, X).

3. Geometry of Mom

3.1. A concrete description of Mg’n. In this section we give a basis for
the Néron-Severi group of My, and write down the boundary divisors and the
symmetric group action.

We recall the explicit iterated blow-up realization
Bn : Moﬂl — ]P)n73

from [Has] (see also a related construction in [Kap].) This construction involves

choosing one of the marked points; we choose s,,. Fix points py,...,p,_1 in linear
general position in P73 := Xg[n]. Let X;[n] be the blow-up of P* 3 at p1,...,pn_1,
and let Fy,..., E, ; denote the exceptional divisors (and their proper transforms

in subsequent blow-ups). Consider the proper transforms ¢;; C X;[n] of the lines
joining p; and p;. Let X5[n] be the blow-up of X;[n] along the ¢;;, with exceptional
divisors E;;. In general, Xj[n] is obtained from X;_4[n] by blowing-up along proper
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transforms of the linear spaces spanned by k-tuples of the points. The exceptional
divisors are denoted
Ei 4 {01,y C{l,...,n—1}
This process terminates with a nonsingular variety X,,_4[n] and a map
B+ Xpan] — P73

One can prove that X,,_4[n] is isomorphic to Mom- We remark that for a generic
point p, € P" 3, we have an identification

/Bgl(pn) = (C7p17p27' .- :pn):

where C' is the unique rational normal curve of degree n — 3 containing pq,...,p,
(see [Kap] for further information).

Let L be the pull-back of the hyperplane class on P2 by 3,. We obtain the
following explicit basis for NS(Mg ,,):

{L,Ei, Eiyiny - By igs oo By i 4}
We shall use the following dual basis for the one-cycles Ny (Mg ,,):
(L (=B (=B )" R (=B LT ()
_3.2. Boundary divisors. Our next task is to identify the boundary divisors
of My, in this basis. These are indexed by partitions
{1,2,...,n} =SUS®, neSand|S||5>2;

the generic point of the divisor Dg corresponds to a curve consisting of two copies
of P! intersecting at a node v, with marked points from S on one component and
from S¢ on the other. Thus we have an isomorphism

Ds =~ Mo s+1 X Mg, jsc|41, (1)
(P',S) Uy (B1,59) —» (P',SU{r}) x (P',S°U{1}).

The exceptional divisors are identified as follows:
Ei17---,ik = Di17...7ik7n7 {il, ‘e ;Zk} C {1, e, — 1}7k S n — 4.

The remaining divisors D, .. ;. ,n are the proper transforms of the hyperplanes
spanned by (n — 3)-tuples of points; we have

[Diy.....in_sm|=L—E;j;, —Eiy —...—Eiy i, w—..— Eiy i .
REMARK 3.1. The explicit resolution of the Segre threefold
R: M[)ﬁ — Seg
alluded to in the introduction is given by the linear series
|2L — Ey — Ey — E3 — E4 — Ej|.

The image is a cubic threefold with ten ordinary double points, corresponding to
the lines £;; contracted by R.
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3.3. The symmetric group action on Mg ,. The symmetric group &,, acts
on My, by the rule
0’(0781, PN 7Sn) = (O, 80(1)7 PN 750(n))-

Let F, C Mom denote the closure of the locus in My, fixed by an element o € &,,.
We make explicit the &,-action in terms of our blow-up realization. Choose
coordinates (zg, 21,22, .- -,2n_3) on P"~3 g0 that

p=(1,0,...,0),....pn—2=(0,...,0,1), pn_1 = (1,1,...,1,1).

Each permutation of the first (n — 1) points can be realized by a unique element
of PGL,,_,. For elements of &,, fixing n, the action on Mo,n is induced by the
corresponding linear transformation on P*~3. Now let o = (jn) and consider the
commutative diagram

MO,TL E) MO,TL

Bk LB

pr—3 AN pr—3

The birational map ¢’ is the Cremona transformation based at the points p;,,...,pi, _,
where

{7:17"'77:71727].} = {1727"'7”71}7

e.g., when o0 = (n — 1,n) we have

(20, 21,y 2n-3) = (2129 .. Zn_3,2022 -« Zn—3y -« 20 -+ Zn_4)-

4. Analysis of surfaces in Moﬁ

4.1. The M(]j case.

PROPOSITION 4.1. NE'(My5) is generated by the divisors D;j, where {ij} C
{1,2,3,4,5}.
Sketch proof: This is well-known, but we sketch the basic ideas to introduce notation

we will require later. As we saw in § 3.1, M 5 is the blow-up of P? at four points
in general position. Consider the set of boundary divisors

Y ={Dis,Dij} ={Ei, L - E; — E;}, {i,j} C{1,2,3,4}
and the set of semiample divisors
E={L-E;2L-E,—E,—E;—E;,L,2L—E,—E; — E}, {i,j,k} C {1,2,3,4}.
These semiample divisors come from the forgetting maps
¢i: Mos — Moy ~P, i=1,...,5
and the blow-downs
Bi:Mos —P? i=1..5.
Kleiman’s criterion yields
O() CNE(My5) = NM' (M, 5)* € C(Z)*.

All the inclusions are equalities because the cones generated by Z and ¥ are
dual; this can be verified by direct computation (e.g., using the computer program
PORTA [PORTA]). O
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4.2. Fixed points and the Cayley cubic. We identify the fixed-point di-
visors for the Gg-action on Mg . When 7 = (12)(34)(56) we have
7(20, 21, 22, 23) = (202223, 212223, 202122, 202123
and F is given by zgz; = 2923. It follows that
[F]=2L—-E — By~ E3 — Ey — Es — Ei3 — Eaz — Eoy — Fua.
More generally, when 7 = (ab)(ed)(j6) we have
[Fr]=2L—FE —Ey— E3— Ey — Es — By — Egq — Epe — Epa.
REMARK 4.2. Consider (P!,sq,...,s¢) € F, and the quotient under the corre-
sponding involution
q:P'— P, q(s1) = q(s2), a(ss) = q(s4), etc.

Consider the map r : Mo g — M3 identifying the pairs (12), (34), and (56) and write
C = q(P!,sy,...,s6), so there is an induced ¢' : C — P!. Thus C is hyperelliptic
and F, corresponds to the closure of 7*h N Mg g, where h C M3 is the hyperelliptic

locus.
3 5
4 6

1
FiGure 1. Trinodal hyperelliptic curves

In Section 5.3 we will use the description of the effective cone of the fixed point
divisors F,. We have seen that these are isomorphic to P! x P! blown-up at five
points p1, ..., ps. The projection from ps

P3 -5 P?
induces a map ¢ : F, — P2, realizing F, as a blow-up of P?: Take four general
lines f1,...,4s in P? with intersections ¢;; = ¢; U {;, and blow-up P? along the ¢;;.
We write

NS(F,) =ZH+ ZG12+ ... + ZG34,

where the G;; are the exceptional divisors and H is the pull back of the hyperplane
class from P2,

PROPOSITION 4.3. NE'(F,) is generated by the (—1)-curves
Gl?)" '7G347H - GU - le:
and the (—2)-curves

H - GU - le - Gil: {Zajlkal} = {172,374}
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Proof: Let ¥ be the above collection of 13 curves. Consider also the following
collection = of 38 divisors, grouped as orbits under the G4-action:

typical member orbit size | induced morphism
H 1 blow-down ¢ : F,, — P?
H -Gy 6 conic bundle F, — P!
2H — G12 — G13 — G23 4 blow-down Fa- — P2
2H — G12 — G23 — G34 12 blow-down Fa- — ]PQ
2H — G12 — G23 — G34 — G14 3 conic bundle Fg — ]Pl
3H — 2G12 — G13 — G23 — G34 12 blow-down Fc, - ]P)(]., 1, 2)

Note that each of these divisors is semiample: the corresponding morphism is indi-
cated in the table. In particular,

C(¥) := {cone generated by ¥} C NE,;(F,),
C(E) := {cone generated by Z} ¢ NM'(F,)
and Kleiman’s criterion yields
C(X) C NE,(F,) = NM'(F,)* c C(2)*.

A direct verification using PORTA [PORTA] shows that the cones C(X) and C(Z)
are dual, so all the inclusions are equalities. O

REMARK 4.4. The image of F; under the resolution R of 3.1 is a cubic surface
with four double points, classically called the Cayley cubic [Hu].

5. The effective cone of MO’G

We now state the main theorem:

THEOREM 5.1. The cone of effective divisors NE! (Mog) is generated by the
boundary divisors and the fixed-point divisors F,, where o € Gg is a product of
three disjoint transpositions.

5.1. Proof of Main Theorem. We use the strategy outlined in § 2. Consider
the collection of boundary and fixed-point loci

I'={Dij;,Dijr, Fy, o= (ij)(kl)(ab), {i,j,k.l.a,0}=1{1,2,3,4,5,6}}
and the subset of boundary divisors
Y ={Dj,Diji}.
We compute the cone NM; (X, Mg 6), the convex hull of the union of the images

of NM; (D;;) and NM; (Djj) in N;(My6). Throughout, we use the dual basis for
Ny (Mo,6) (cf. (1)):

{L? E},E3, E;,E},E}, ~LEs, — LE3,
—LEy4,—LE5,—LEs3,—LEsy, —LE>5,—LEsy,—LE35, —LEys5}.
Recall the isomorphism (%)
(Tijks Tiap) : Dijr — PYx P, {i,4,k,1,a,b, ¢} = {1,2,3,4,5,6}
so that
N1 (Dijk) = ZBijr ® ZBiap, NMi(Dijr) = Ry Biji + Ry Bas,
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where B;jy, is the class of the fiber of m;;; (and its image in Ny (Mgs)). For example,
the inclusion jas : D345 — Mg induces

0\

0

(.)_000000710000000
J3s)«=11"17 17000 =1 00 00000

using the bases (1) for Ny (Mg ) and {Biag, Baas} for Ni(D3gs). In particular, we
find

o O

NMl({Di]’k}HHOﬁ) = C({Bz]k})7 {Z]7 k} C {17 2: 37 4: 57 6}:
with (g) = 20 generators permuted transitively by &g (Table 1).

The boundary divisor D;; is isomorphic to Moﬁ with marked points {k,[,a,b, v}
where {i,7,k,l,a,b} = {1,2,3,4,5,6} and v is the node (cf. formula (})). The
proof of Proposition 4.1 gives generators for the nef cone of D;;. Thus the cone
NMl(Dij,M[LG) is generated by the classes

{Aij, Aijir, Aija, Aijias Aijip, Cij, Cijik Cijit, Cijsa, Cijsn } € Ni(Mog)

corresponding to the forgetting and blow-down morphisms

{¢V7¢k: (Zsl: ¢a7¢b:ﬁu7ﬁk:ﬁl:ﬁa:ﬁb}-

As an example, consider the inclusion js5 : Dys < M[)ﬁ with

1000 0 0 1 1 00 1 00000\

010000 -1 -1 00 0O O0OOTO0OCO0O®O
jis, =] 0 01000 -1 0 00 -1010U0200

0o o0oo01oo o0 -10O0-1020200020

o o0oo0o0o0o0 0O O OOTOOO0OO0OTO0T1

Applying this to the nef divisors of Dy gives the generators for NM; (Dys, M 6)
(Table 2).

However, four of the (—1)-curves in D;; are contained in D;ji, D;ji, D;ja, and
Dy, with classes Bjji, Biji, Bija, and B;j, respectively. Thus we have the relations

Cij = Aijik + Biji,  Cijr = Aij + Bijk
which implies that the C;; and Cj;;; are redundant:

PROPOSITION 5.2. The cone NM; (X, M) is generated by the A;j, the Ajj,
and the Bijlc-

These are written out in Tables 1,3, and 4.

Our next task is to write out the generators for the dual cone C(I')*, as com-
puted by PORTA [PORTA]. Since I' is stable under the Gg action, so are C(T")
and its dual cone. For the sake of brevity, we only write Gg-representatives of the
generators, ordered by anticanonical degree.

The discussion of Section 2 shows that Theorem 5.1 will follow from the inclu-
sion

C(T)* € NM; (2, Mog).

We express each generator of C'(I')* as a sum (with non-negative coefficients) of the
{Aij, Aijk, Biji }. Both cones are stable under the Gg-action, so it suffices to pro-
duce expressions for one representative of each Gg-orbit. We use the representatives
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from Table 5:

(1) = A+ A3+ Ass +2Boss (2) = Asus + Biog
(3) = Ais+ Ais+2Boss (4) = Ass + Biag + Bise
(5) = A3+ B + Bise + Baze  (6) = A15 + A1s + Baze + Base + Base
(7) Ay3;5 + A1s + Bagg + Basg  (8) = Ara5 + A14 + Base + Bsse
(9) = Aos+ Azq+ Biog + Bizg + Bise
(10) = A5 + Bige + Biae + Base + Bass
(11) = Aszss+ Assa+ Aos;s + Buag  (12) = Aio + Aszs + 2B196 + 2Bsas
(13) Ais + Arg + Azz + 2B146 + 2Basg
(14) = Ayzs + Ais + Azs + Biszg + Biss + Base
(15) = Az + Aosygs + Ars + Bise + Bass
(16) = Asys + Ais + Bise + Bise + Base
(17) A + 2A25 + 2Bi3e + 2Biae
(18) = Ain3z+ Azs + Bizg + Bize + Az
(19) = Aizs + Ais + Azs + Bise + Base + Baas
(20) = Az + Ass + Aus + 2B126 + Base
(21) A1z + A1z + Biag + Bise + Bass + Baag + Buse
(22) = Ais+ Az + Ass + Bigg + Biae + Bise + 2Ba3s
(23) = Aizs + Aras + Azz + A1z + Base + 2Buse
(24) = Ais5+ Az + Aoy + Azq + Biog + Bise + Biag + Bise + 2Bass
(25) = 2414+ Ass +2A13,5 + 2Bos6 + 2B3s6

This completes the proof of Theorem 5.1.00

5.2. Geometric interpretations of coextremal rays. By definition, a co-
extremal ray Ry p C NM; (X) satisfies the following

e for any nontrivial p1, p2 € NM;(X) with p1 + p2 € Ry p, p1,p2 € Ry p;

e Kxp<0.
Batyrev ([Ba], Theorem 3.3) shows that, for smooth (or Q-factorial terminal) three-
folds, the minimal model program yields a geometric interpretation of coextremal
rays. They arise from diagrams

X - Y
lu
B

where v is a sequence of birational contractions and p is a Mori fiber space. The
coextremal ray p = 1*[C], where C is a curve lying in the general fiber of y. These
interpretations will hold for higher-dimensional varieties, provided the standard
conjectures of the minimal model program are true.

It is natural then to write down these Mori fiber space structures explicitly.
Our analysis makes reference to the list of orbits of coextremal rays in Table 5 (and
uses the same numbering):
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The first orbit in the Table is orthogonal to each of the boundary divisors
D;; C Mo,e- The @ Fano fibration associated with this coextremal ray
must contract these divisors. The anticanonical series | — K77 | yields a
birational morphism

MO,G —)jCHD4

onto a quartic Q-Fano hypersurface, called the Igusa quartic [Hu]. The
fifteen singular points of the Igusa quartic are the images of the D;;. The
coextremal ray has anticanonical degree two and corresponds to curves
passing through the generic point, i.e., the conics in J.

Forgetting any of the six marked points

Mo — Moy

yields a Mori fiber space, and the fibers are coextremal.

We define a conic bundle structure on M ¢ by explicit linear series, using
the blow-up description of Subsection 3.1. Consider the cubic surfaces in
P? passing through the lines

6147 6157 6247 6257 6347 635 .

This linear series has additional base points: Any cubic surface containing
the lines 214,£24,£34 (resp. 215,225,235) must be singular at P4 (resp. p5),
and thus contains the line £45 by the Bezout Theorem.

Our linear series has projective dimension two. Indeed, cubic hyper-
surfaces in IP? depend on 19 parameters; the singularities at ps and ps each
impose four conditions, the remaining points p;, p2, ps impose three fur-
ther conditions, and containing the six lines imposes six more conditions.
Thus we obtain a conic bundle structure

W MO’G -3 P2
collapsing the two-parameter family of conics passing through the six lines
above.
For any two disjoint subsets {i,j},{k,1} C {1,2,3,4,5,6} we consider the
forgetting maps
¢ij : Mog — P!, ¢ Mog — P
Together, these induce a conic bundle structure
(¢ij. dri) : Mog — P x P

The class of a generic fiber is coextremal.

__ 5.3. The moving cone. Our analysis gives, implicitly, the moving cone of
M076:
THEOREM 5.3. The closed moving cone of Mo,e is equal to NMl(F,MO,G)*,

where T is the set of generators for NE*(Myg).

In the terminology of [Ru], the ‘inductive moving cone’ equals the ‘moving

cone’. Combining Theorem 5.3 with the computation of the ample cones to the
boundaries D;; and D;;y, and the fixed-point divisors Fi, (Proposition 4.3) we obtain
the moving cone. However, finding explicit generators for the moving cone is a
formidable computational problem.
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Proof: Recall that Mg ¢ is a log Fano threefold: — (K37, , + €22, Dij) is ample

for small € > 0 [KeMc]. Using Corollary 2.16 of [KeHu], it follows that Mg g
is a ‘Mori Dream Space’. The argument of Theorem 3.4.4 of [Ru] shows that an
effective divisor on Moﬁ that restricts to an effective divisor on each generator
A; €T is in the moving cone. O

REMARK 5.4. Our proof of Theorem 5.1 uses the cone NM; (2, Mg 6)*, rather
than the (strictly) smaller moving cone. Of course, if the coextremal rays are in
NM; (X, Mg), a fortiori they are in NM; (T, Mo ).
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TABLE 1. Generators for NMy ({Djjx }, Mog)
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TABLE 2. Generators for NM;(Dys, Mo 6)

1
1
1
2
1
2

2

Agss

Agsn

Augs;2

Auss;3

Aussie

Case

Cas

Clas;2

Clas;3

Cas

TABLE 3. Generators A;; for NMy({D;;}, M)

A1z
Aig
A14
Ais
Ais
Azs
A24
Ass
Azg
Aza
Aszs
Asze
Aas
Aus
Ase
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ON THE EFFECTIVE CONE

TABLE 4. Generators Aij;k for NMl({Dl]}, M076)
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TABLE 5. Gg-orbits of coextremal rays of Mg g
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