\relax \citation{Far} \citation{HM} \citation{EH} \citation{BCHM} \citation{SB} \citation{HH1} \citation{Has} \citation{HL1} \citation{HL2} \citation{Sch} \@writefile{toc}{\contentsline {section}{\tocsection {}{1}{Introduction}}{2}} \newlabel{S:intro}{{1}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Geometry of the flip}}{3}} \newlabel{fig:GF}{{1}{3}} \citation{DM} \citation{Sch} \citation{Sch} \@writefile{toc}{\contentsline {section}{\tocsection {}{2}{Statement of results and strategy of proof}}{5}} \newlabel{S:SRSP}{{2}{5}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.1}{Stability notions for algebraic curves}}{5}} \newlabel{D:p-stable}{{2.1}{5}} \newlabel{D:eb}{{2.2}{5}} \newlabel{D:ech}{{2.3}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Generic elliptic bridges}}{6}} \newlabel{F:eb}{{2}{6}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces Generic elliptic chain of length three}}{6}} \newlabel{D:echain}{{2.4}{6}} \citation{HH1} \citation{HM} \citation{HH1} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Generic weak elliptic chain}}{7}} \newlabel{F:w-echain}{{4}{7}} \newlabel{D:c-stable}{{2.5}{7}} \newlabel{D:h-stable}{{2.6}{7}} \newlabel{R:whatiscstable}{{2.7}{7}} \newlabel{SS:CSCP}{{2.2}{7}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.2}{Construction of the small contraction $\Psi $}}{7}} \newlabel{L:logterm}{{2.8}{7}} \newlabel{E:ramify}{{2.1}{7}} \citation{KM} \citation{HH1} \citation{GKM} \@writefile{lot}{\contentsline {table}{\numberline {1}{\ignorespaces Stability notions}}{8}} \newlabel{Tab:stability}{{1}{8}} \newlabel{default}{{1}{8}} \newlabel{E:logdisc}{{2.2}{8}} \citation{HH1} \citation{HH1} \citation{F4} \citation{GKM} \citation{GKM} \citation{KM} \newlabel{P:makePsi}{{2.9}{9}} \citation{Mor} \citation{GKM} \citation{HH1} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.3}{Construction of the flip $\Psi ^+$}}{11}} \newlabel{P:cyclebicanonical}{{2.11}{11}} \newlabel{E:cycle}{{2.3}{11}} \newlabel{E:psiplus}{{2.4}{11}} \newlabel{T:main12}{{2.12}{11}} \newlabel{eqn:Tmain1}{{2.5}{11}} \newlabel{eqn:Tmain2}{{2.6}{11}} \citation{HL2} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.4}{Stability results on bicanonical curves}}{12}} \newlabel{T:Chow}{{2.13}{12}} \newlabel{T:Hilbert}{{2.14}{12}} \newlabel{C:excep-Psi}{{2.15}{12}} \newlabel{SS:detailed}{{2.5}{13}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{2.5}{Detailed roadmap for the GIT analysis}}{13}} \citation{GIT} \@writefile{toc}{\contentsline {section}{\tocsection {}{3}{GIT of Chow varieties and Hilbert schemes}}{14}} \newlabel{S:GITCH}{{3}{14}} \citation{M} \citation{M} \citation{Sch} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.1}{GIT of Chow points}}{15}} \newlabel{T:Mumford}{{3.2}{15}} \newlabel{L:balance}{{3.3}{15}} \citation{Sch} \citation{HHL} \newlabel{L:degree}{{3.4}{16}} \newlabel{subsect:GITHP}{{3.2}{16}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.2}{GIT of Hilbert points}}{16}} \newlabel{D:mth-hilb-pt}{{3.5}{16}} \citation{Gies} \citation{MumCAS} \citation{EisGoS} \citation{MumCAS} \citation{MumCAS} \newlabel{prop:stabcrit2}{{3.7}{17}} \newlabel{eqn:stabcrit}{{3.1}{17}} \newlabel{subsect:PHS}{{3.3}{17}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.3}{Polarizations on Hilbert schemes}}{17}} \citation{Fog} \citation{Kn} \newlabel{subsect:TCHS}{{3.4}{18}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.4}{Tautological classes on the Hilbert scheme}}{18}} \newlabel{eqn:taut}{{3.2}{18}} \newlabel{eqn:expansion}{{3.3}{18}} \newlabel{prop:depend}{{3.9}{18}} \citation{Vbook} \newlabel{eqn:expansion2}{{3.4}{19}} \newlabel{subsect:HPHS}{{3.5}{19}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.5}{Hilbert points and Hilbert schemes}}{19}} \newlabel{prop:hphs}{{3.10}{19}} \citation{GIT} \citation{GIT} \citation{Kn} \newlabel{coro:compareindex}{{3.12}{20}} \newlabel{eqn:equalindices}{{3.5}{20}} \newlabel{subsect:CPHS}{{3.6}{20}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.6}{Chow stability and Hilbert stability}}{20}} \newlabel{eqn:Chowpolarization}{{3.6}{20}} \newlabel{eqn:hilbtochow}{{3.7}{20}} \citation{DolHu} \citation{Rei} \newlabel{prop:HilbtoChow}{{3.13}{21}} \newlabel{coro:HilbtoChow}{{3.14}{21}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.7}{Filtered Hilbert polynomials}}{21}} \newlabel{prop:fhf}{{3.16}{21}} \citation{GIT} \newlabel{eqn:expand}{{3.8}{22}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{3.8}{Hilbert schemes of curves}}{22}} \newlabel{prop:curveresult}{{3.17}{22}} \newlabel{eqn:curveindices}{{3.9}{22}} \newlabel{E:HisMu}{{3.10}{22}} \citation{Bia} \citation{Ses} \@writefile{toc}{\contentsline {section}{\tocsection {}{4}{Basin of attraction and equivalences}}{23}} \newlabel{S:basin}{{4}{23}} \newlabel{D:basin}{{4.1}{23}} \newlabel{P:whybasin}{{4.2}{23}} \citation{GIT} \citation{Mat} \citation{Bia63} \citation{Kempf} \citation{thaddeus} \newlabel{L:flat limit}{{4.3}{24}} \newlabel{P:destabilize}{{4.4}{25}} \newlabel{T:ss-replacement}{{4.5}{25}} \citation{V} \citation{CH} \@writefile{toc}{\contentsline {section}{\tocsection {}{5}{Computations over the moduli space of stable curves}}{26}} \newlabel{S:CMS}{{5}{26}} \newlabel{eqn:multiplication}{{5.1}{26}} \citation{Vbook} \citation{M} \newlabel{prop:descendHilb}{{5.1}{27}} \citation{M} \citation{M} \citation{CH} \newlabel{eqn:grr}{{5.2}{28}} \newlabel{E:Lm}{{5.3}{28}} \newlabel{prop:descendChow}{{5.2}{28}} \newlabel{thm:getcontraction}{{5.4}{29}} \newlabel{eqn:PicCongruence}{{5.4}{29}} \citation{DM} \@writefile{toc}{\contentsline {section}{\tocsection {}{6}{Properties of c-semistable and h-semistable curves}}{30}} \newlabel{S:propchstable}{{6}{30}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{6.1}{Embedding c-semistable curves}}{30}} \newlabel{P:embedcstable}{{6.1}{30}} \newlabel{E:va}{{6.1}{31}} \citation{Kol} \citation{Kol} \citation{Kol} \newlabel{C:versal}{{6.3}{33}} \newlabel{C:all-m}{{6.4}{33}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{6.2}{Basic properties of tacnodal curves}}{34}} \newlabel{P:const-tac}{{6.5}{34}} \newlabel{eqn:iotamap}{{6.2}{35}} \newlabel{P:limit-tac}{{6.6}{35}} \citation{M} \citation{Sch} \citation{M} \@writefile{toc}{\contentsline {section}{\tocsection {}{7}{Unstable bicanonical curves}}{36}} \newlabel{S:UBC}{{7}{36}} \newlabel{P:chow-imply-c}{{7.1}{36}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{7.1}{Badly singular curves are Chow unstable}}{36}} \citation{M} \citation{M} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{7.2}{Polarizations on semistable limits of bicanonical curves}}{38}} \newlabel{P:pol-ss-limit}{{7.5}{38}} \citation{Gies} \citation{Gies} \citation{Gies} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{7.3}{Elliptic subcurves meeting the rest of the curve in one point}}{39}} \newlabel{P:g1-1tac}{{7.8}{40}} \newlabel{S:Hilb-unstable}{{7.4}{41}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{7.4}{Hilbert unstable curves}}{41}} \newlabel{P:hilb-imply-h}{{7.10}{41}} \@writefile{toc}{\contentsline {section}{\tocsection {}{8}{Classification of curves with automorphisms}}{41}} \newlabel{S:automorphisms}{{8}{41}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{8.1}{Rosaries}}{42}} \newlabel{D:rosary}{{8.1}{42}} \newlabel{rem:rosary}{{8.4}{42}} \newlabel{P:rosary-aut}{{8.5}{42}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Closed rosary of genus six}}{43}} \newlabel{F:rosary}{{5}{43}} \newlabel{E:para}{{8.1}{44}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Breaking a bead of a rosary}}{44}} \newlabel{F:breaking-bead}{{6}{44}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{8.2}{Classification of automorphisms}}{44}} \newlabel{P:hsinf}{{8.7}{44}} \newlabel{C:hsinf1}{{8.8}{45}} \citation{M} \newlabel{C:hsinf}{{8.9}{46}} \@writefile{toc}{\contentsline {section}{\tocsection {}{9}{Interpreting the flip via GIT}}{46}} \newlabel{S:FGITQ}{{9}{46}} \newlabel{T:partial}{{9.1}{46}} \newlabel{E:smallproj}{{9.1}{47}} \@writefile{toc}{\contentsline {section}{\tocsection {}{10}{Stability under one-parameter subgroups}}{49}} \newlabel{S:hardwork}{{10}{49}} \newlabel{S:open-rosaries}{{10.1}{49}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.1}{Stability analysis: Open rosaries}}{49}} \newlabel{P:hs-o-ros}{{10.1}{49}} \newlabel{C:cs-o-ros}{{10.2}{49}} \newlabel{E:gen1}{{10.1}{50}} \newlabel{E:gen2}{{10.2}{50}} \newlabel{E:inL-deg2}{{10.3}{51}} \newlabel{E:L-deg2}{{10.4}{51}} \newlabel{E:D-deg2}{{10.5}{51}} \newlabel{S:ba-o-ros}{{10.2}{53}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.2}{Basin of attraction: Open rosaries}}{53}} \newlabel{P:hs-echain}{{10.3}{54}} \newlabel{P:echain-unstable}{{10.4}{54}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.3}{Stability analysis: Closed rosaries}}{54}} \newlabel{P:hss-c-ros}{{10.5}{54}} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Basin of attraction of an open rosary of length five}}{55}} \newlabel{F:basin-o-ros-even1}{{7}{55}} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Basin of attraction of an open rosary of length four}}{55}} \newlabel{F:basin-o-ros-odd}{{8}{55}} \newlabel{E:CRgen}{{10.7}{56}} \newlabel{E:inCR}{{10.8}{56}} \newlabel{E:inL-syz-deg3}{{10.9}{56}} \newlabel{S:basin-closed}{{10.4}{57}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.4}{Basin of attraction: Closed rosaries}}{57}} \newlabel{P:gen-ss-c}{{10.6}{57}} \newlabel{S:rosary-broken}{{10.5}{57}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.5}{Stability analysis: Closed rosaries with a broken bead}}{57}} \newlabel{P:hs-cr-1br}{{10.7}{57}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Basin of attraction of a closed rosary of length six}}{58}} \newlabel{F:basin-c-ros}{{9}{58}} \@writefile{lof}{\contentsline {figure}{\numberline {10}{\ignorespaces Closed rosary of genus six with a broken bead}}{58}} \newlabel{F:broken-rosary}{{10}{58}} \newlabel{E:CR1-para}{{10.10}{58}} \newlabel{E:weight-even-g}{{10.11}{58}} \newlabel{E:deg3-gb}{{10.12}{59}} \newlabel{E:1bead-deg2-1}{{10.13}{59}} \newlabel{E:1bead-deg2-2}{{10.14}{59}} \newlabel{E:1bead-deg3}{{10.15}{59}} \@writefile{lof}{\contentsline {figure}{\numberline {11}{\ignorespaces Basin of attraction of a closed rosary with a broken bead}}{60}} \newlabel{F:basin-c-ros-1broken}{{11}{60}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{10.6}{Basin of attraction: Closed rosary with a broken bead}}{60}} \newlabel{P:basin-cr-1br}{{10.8}{60}} \newlabel{C:basin-cr-1br}{{10.9}{60}} \citation{Ses1} \@writefile{toc}{\contentsline {section}{\tocsection {}{11}{Proofs of semistability and applications}}{61}} \newlabel{S:PSA}{{11}{61}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{11.1}{Elliptic bridges and their replacements}}{61}} \@writefile{lof}{\contentsline {figure}{\numberline {12}{\ignorespaces A generic elliptic bridge of length three}}{62}} \newlabel{F:eb-length3}{{12}{62}} \@writefile{lof}{\contentsline {figure}{\numberline {13}{\ignorespaces A generic closed elliptic bridge of length six and genus seven}}{62}} \newlabel{F:closed-bridge}{{13}{62}} \newlabel{L:possibilities}{{11.2}{62}} \@writefile{lof}{\contentsline {figure}{\numberline {14}{\ignorespaces A configuration corresponding to $C_1-\@mathbb P^1=\@mathbb P^1=E-C_2$}}{63}} \newlabel{F:graph}{{14}{63}} \citation{Sch} \citation{Sch} \newlabel{R:subsets}{{11.4}{65}} \newlabel{P:degenerate}{{11.5}{65}} \newlabel{SS:CSBC}{{11.2}{67}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{11.2}{Chow semistability of c-semistable curves}}{67}} \newlabel{P:c-minorbit}{{11.6}{68}} \newlabel{SS:HS}{{11.3}{68}} \@writefile{toc}{\contentsline {subsection}{\tocsubsection {}{11.3}{ Hilbert semistability of h-semistable curves}}{68}} \@writefile{lof}{\contentsline {figure}{\numberline {15}{\ignorespaces Degeneration to the c-semistable closed orbit curve}}{69}} \newlabel{F:min-o-ros1}{{15}{69}} \newlabel{P:h-minorbit}{{11.8}{71}} \citation{Kempf} \bibstyle{alpha} \bibdata{mgflip} \bibcite{Bia63}{BB63} \bibcite{Bia}{BB73} \bibcite{BCHM}{BCHM06} \bibcite{CH}{CH88} \newlabel{eqn:tricky}{{11.1}{73}} \@writefile{toc}{\contentsline {section}{\tocsection {}{}{References}}{73}} \bibcite{DolHu}{DH98} \bibcite{DM}{DM69} \bibcite{EH}{EH86} \bibcite{EisGoS}{Eis05} \bibcite{F4}{Fab96} \bibcite{Far}{Far06} \bibcite{Fog}{Fog69} \bibcite{Gies}{Gie82} \bibcite{GKM}{GKM02} \bibcite{Has}{Has05} \bibcite{HHL}{HHL07} \bibcite{HH1}{HHar} \bibcite{HL2}{HL07a} \bibcite{HL1}{HL07b} \bibcite{HM}{HM82} \bibcite{Kempf}{Kem78} \bibcite{Kn}{KM76} \bibcite{KM}{KM98} \bibcite{Kol}{Kol96} \bibcite{Mat}{Mat60} \bibcite{GIT}{MFK94} \bibcite{Mor}{Mor98} \bibcite{MumCAS}{Mum66} \bibcite{M}{Mum77} \bibcite{Rei}{Rei89} \bibcite{SB}{SB06} \bibcite{Sch}{Sch91} \bibcite{Ses1}{Ses72} \bibcite{Ses}{Ses77} \bibcite{thaddeus}{Tha96} \bibcite{V}{Vie89} \bibcite{Vbook}{Vie95} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{15.01373pt} \newlabel{tocindent1}{26.76361pt} \newlabel{tocindent2}{0pt} \newlabel{tocindent3}{0pt}