\relax \citation{LP} \citation{Hu99} \citation{Hu99} \citation{Fujiki} \citation{Bea85} \citation{Hu99} \citation{Deb} \citation{Nami2} \citation{Mar06} \citation{Bea85} \citation{BeauDonagi} \citation{HT07} \@writefile{toc}{\contentsline {section}{\tocsection {}{1}{Introduction}}{1}} \citation{HT01} \citation{Mu84} \citation{Hu97} \citation{Mor} \citation{Kaw} \citation{Reid} \citation{Fr} \citation{Mor} \citation{Kaw} \@writefile{toc}{\contentsline {section}{\tocsection {}{2}{Cubic threefolds with six double points}}{4}} \newlabel{sect:cubic-3}{{2}{4}} \newlabel{lemm:noplane}{{1}{4}} \newlabel{prop:project}{{2}{4}} \newlabel{coro:linessing}{{4}{5}} \citation{AK} \citation{CG} \citation{Grass} \citation{Schr} \citation{Clebs} \citation{Dickson} \citation{Beau99} \citation{BK} \citation{Dolg} \citation{BSegre} \citation{Beau99} \newlabel{coro:unique}{{5}{6}} \@writefile{toc}{\contentsline {section}{\tocsection {}{3}{Determinantal cubic surfaces and threefolds}}{6}} \newlabel{sect:deter}{{3}{6}} \newlabel{prop:Grassmann}{{6}{6}} \citation{Segre} \newlabel{prop:Segre}{{8}{7}} \newlabel{eq:perp}{{1}{7}} \newlabel{eqn:semidirect}{{2}{7}} \citation{ACGH} \newlabel{prop:linalg}{{9}{8}} \newlabel{eqn:incl1}{{3}{9}} \newlabel{eq:defS}{{4}{10}} \newlabel{eq:defY}{{5}{10}} \newlabel{prop:transversal}{{10}{11}} \@writefile{toc}{\contentsline {section}{\tocsection {}{4}{Geometric applications of the determinantal description}}{11}} \newlabel{sect:apply}{{4}{11}} \newlabel{prop:getlines}{{11}{11}} \citation{Fulton} \newlabel{coro:fibration}{{12}{12}} \newlabel{prop:components}{{13}{12}} \newlabel{lemm:identify}{{14}{13}} \newlabel{eq:obvious}{{6}{13}} \newlabel{lemm:glue}{{15}{14}} \newlabel{prop:scroll}{{17}{15}} \citation{CLSS} \newlabel{prop:twisted}{{18}{16}} \@writefile{toc}{\contentsline {section}{\tocsection {}{5}{Cubic threefolds with six double points are determinantal}}{16}} \newlabel{sect:CTAD}{{5}{16}} \newlabel{prop:inverse}{{19}{16}} \citation{Hu} \citation{Kap2} \citation{Kap} \newlabel{eqn:cubictosegre}{{7}{17}} \citation{Cr} \citation{Dolg} \newlabel{eqn:inv}{{8}{18}} \newlabel{prop:tosegre}{{21}{18}} \newlabel{eqn:project}{{9}{18}} \@writefile{toc}{\contentsline {section}{\tocsection {}{6}{Constructing flops}}{20}} \newlabel{sect:example}{{6}{20}} \newlabel{prop:fourfold}{{23}{20}} \newlabel{theo:cubicscroll}{{24}{20}} \citation{CG} \newlabel{eqn:barL}{{10}{21}} \citation{Leung} \newlabel{eqniota}{{11}{22}} \citation{Boucksom} \citation{BHL} \citation{WW} \citation{BeauDonagi} \citation{Has00} \newlabel{prop:fixeddivisor}{{27}{24}} \@writefile{toc}{\contentsline {section}{\tocsection {}{7}{Cones of moving and ample divisors}}{24}} \newlabel{sect:appl-cones}{{7}{24}} \citation{HT07} \newlabel{prop:nef1}{{29}{26}} \newlabel{prop:nef2}{{30}{27}} \citation{HT01} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces The nef cones of $F$ and $F_1^{\vee }$}}{28}} \newlabel{figone}{{1}{28}} \newlabel{theo:main}{{31}{28}} \citation{AV} \bibstyle{plain} \bibdata{flopping} \bibcite{AK}{1} \bibcite{AV}{2} \bibcite{ACGH}{3} \bibcite{Bea85}{4} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Partition of the positive cone into ample cones for various minimal models}}{29}} \newlabel{figtwo}{{2}{29}} \@writefile{toc}{\contentsline {section}{\tocsection {}{}{References}}{29}} \bibcite{Beau99}{5} \bibcite{BeauDonagi}{6} \bibcite{Boucksom}{7} \bibcite{BK}{8} \bibcite{BHL}{9} \bibcite{Clebs}{10} \bibcite{CG}{11} \bibcite{CLSS}{12} \bibcite{Cr}{13} \bibcite{Deb}{14} \bibcite{Dickson}{15} \bibcite{Dolg}{16} \bibcite{Fr}{17} \bibcite{Fujiki}{18} \bibcite{Fulton}{19} \bibcite{Grass}{20} \bibcite{Has00}{21} \bibcite{HT01}{22} \bibcite{HT07}{23} \bibcite{Hu}{24} \bibcite{Hu97}{25} \bibcite{Hu99}{26} \bibcite{Kap}{27} \bibcite{Kap2}{28} \bibcite{Kaw}{29} \bibcite{Leung}{30} \bibcite{LP}{31} \bibcite{Mar06}{32} \bibcite{Mor}{33} \bibcite{Mu84}{34} \bibcite{Nami2}{35} \bibcite{Reid}{36} \bibcite{Schr}{37} \bibcite{BSegre}{38} \bibcite{Segre}{39} \bibcite{WW}{40} \newlabel{tocindent-1}{0pt} \newlabel{tocindent0}{15.01373pt} \newlabel{tocindent1}{20.88867pt} \newlabel{tocindent2}{0pt} \newlabel{tocindent3}{0pt}