\begin{thebibliography}{10} \providecommand{\url}[1]{\texttt{#1}} \providecommand{\urlprefix}{URL } \providecommand{\eprint}[2][]{\url{#2}} \bibitem{beauville} Beauville, A. Vari\'et\'es {K}\"ahleriennes dont la premi\`ere classe de {C}hern est nulle. \emph{J. Differential Geom.} \textbf{18} (1983), no.~4, 755--782 (1984). \bibitem{magma} Bosma, W.; Cannon, J.; Playoust, C. The {M}agma algebra system. {I}. {T}he user language. \emph{J. Symbolic Comput.} \textbf{24} (1997), no. 3-4, 235--265. Computational algebra and number theory (London, 1993), \urlprefix\url{http://dx.doi.org/10.1006/jsco.1996.0125}. \bibitem{Cre-mwrank} Cremona, J.~E. The mwrank library. {\tt www.warwick.ac.uk/staff/J.E.Cremona/mwrank}. \bibitem{DMOS} Deligne, P.; Milne, J.~S.; Ogus, A.; Shih, K.-Y. \emph{Hodge cycles, motives, and {S}himura varieties}, \emph{Lecture Notes in Mathematics}, vol. 900. Springer-Verlag, Berlin, 1982. \bibitem{EGL} Ellingsrud, G.; G{\"o}ttsche, L.; Lehn, M. On the cobordism class of the {H}ilbert scheme of a surface. \emph{J. Algebraic Geom.} \textbf{10} (2001), no.~1, 81--100. \bibitem{Fujiki} Fujiki, A. On the de {R}ham cohomology group of a compact {K}\"ahler symplectic manifold. In \emph{Algebraic geometry, Sendai, 1985}, \emph{Adv. Stud. Pure Math.}, vol.~10, pp. 105--165, North-Holland, Amsterdam, 1987. \bibitem{FulHar} Fulton, W.; Harris, J. \emph{Representation theory}, \emph{Graduate Texts in Mathematics}, vol. 129. Springer-Verlag, New York, 1991. \bibitem{Gott90} G{\"o}ttsche, L. The {B}etti numbers of the {H}ilbert scheme of points on a smooth projective surface. \emph{Math. Ann.} \textbf{286} (1990), no. 1-3, 193--207. \bibitem{GHS} Gritsenko, V.; Hulek, K.; Sankaran, G.~K. Moduli spaces of irreducible symplectic manifolds. \emph{Compos. Math.} \textbf{146} (2010), no.~2, 404--434. \urlprefix\url{http://dx.doi.org/10.1112/S0010437X0900445X}. \bibitem{HTGAFA99} Hassett, B.; Tschinkel, Y. Rational curves on holomorphic symplectic fourfolds. \emph{Geom. Funct. Anal.} \textbf{11} (2001), no.~6, 1201--1228. \bibitem{HTGAFA08} Hassett, B.; Tschinkel, Y. Moving and ample cones of holomorphic symplectic fourfolds. \emph{Geom. Funct. Anal.} \textbf{19} (2009), no.~4, 1065--1080. \bibitem{HT10} Hassett, B.; Tschinkel, Y. Hodge theory and {L}agrangian planes of generalized {K}ummer fourfolds. 2010. Preprint, 28 pages. \bibitem{HT09} Hassett, B.; Tschinkel, Y. Intersection numbers of extremal rays on holomorphic symplectic varieties. \emph{Asian J. of Math.} \textbf{14} (2010), no.~3, 303--322. \bibitem{lang} Lang, S. \emph{Elliptic curves: {D}iophantine analysis}, \emph{Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]}, vol. 231. Springer-Verlag, Berlin, 1978. \bibitem{LS} Lehn, M.; Sorger, C. The cup product of {H}ilbert schemes for {$K3$} surfaces. \emph{Invent. Math.} \textbf{152} (2003), no.~2, 305--329. \bibitem{MarkCrelle} Markman, E. Generators of the cohomology ring of moduli spaces of sheaves on symplectic surfaces. \emph{J. Reine Angew. Math.} \textbf{544} (2002), 61--82. \urlprefix\url{http://dx.doi.org/10.1515/crll.2002.028}. \bibitem{Mark1} Markman, E. On the monodromy of moduli spaces of sheaves on {$K3$} surfaces. \emph{J. Algebraic Geom.} \textbf{17} (2008), no.~1, 29--99. \bibitem{Nakajima} Nakajima, H. Heisenberg algebra and {H}ilbert schemes of points on projective surfaces. \emph{Ann. of Math. (2)} \textbf{145} (1997), no.~2, 379--388. \bibitem{Ran} Ran, Z. Hodge theory and deformations of maps. \emph{Compositio Math.} \textbf{97} (1995), no.~3, 309--328. \bibitem{Sil-AEC} Silverman, J.~H. \emph{The arithmetic of elliptic curves}, \emph{Graduate Texts in Mathematics}, vol. 106. Springer-Verlag, New York, 1992. \bibitem{ST-ratpoints} Silverman, J.~H.; Tate, J. \emph{Rational points on elliptic curves}. Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1992. \bibitem{sage-4.4.1} Stein, W.; et~al. \emph{{S}age {M}athematics {S}oftware ({V}ersion 4.4.1)}. The Sage Development Team, 2010. {\tt http://www.sagemath.org}. \bibitem{Verb} Verbitsky, M. Cohomology of compact hyper-{K}\"ahler manifolds and its applications. \emph{Geom. Funct. Anal.} \textbf{6} (1996), no.~4, 601--611. \bibitem{Voisin} Voisin, C. Sur la stabilit\'e des sous-vari\'et\'es lagrangiennes des vari\'et\'es symplectiques holomorphes. In \emph{Complex projective geometry ({T}rieste, 1989/{B}ergen, 1989)}, \emph{London Math. Soc. Lecture Note Ser.}, vol. 179, pp. 294--303, Cambridge Univ. Press, Cambridge, 1992. \bibitem{Wut-thesis} Wuthrich, C. The fine {S}elmer group and height pairings. Ph.D. thesis, Cambridge, 2004. \\{\tt http://www.maths.nottingham.ac.uk/personal/cw/download/phd.pdf}. \end{thebibliography}