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Abstract. We study arithmetic properties of derived equivalent
K3 surfaces over the field of Laurent power series, using the equi-
variant geometry of K3 surfaces with cyclic groups actions.

1. Introduction

Let X and Y be smooth K3 surfaces over a nonclosed field K. Sup-
poseX and Y are derived equivalent overK, i.e., there is an equivalence
of bounded derived categories of coherent sheaves

Φ : Db(X)→ Db(Y ),

as triangulated categories, defined over K. Such a derived equivalence
respects (see [HT17, Section 1]):

• the Galois action on geometric Picard groups,
• the Brauer groups,
• the index, i.e., the gcd of degrees of field extensions K ′/K such

that X(K ′) 6= ∅.
We are interested in understanding which other arithmetic properties

are preserved under Φ. Specifically, in [HT17] we asked whether or not

X(K) 6= ∅ ⇔ Y (K) 6= ∅.
This is known when

• K = Fq is finite, char(K) > 2, [LO15], [Huy16a, 16.4.3],
• K is real [HT17, Prop. 25],
• K = C((t)) [HT17, Cor. 30], assuming that local monodromy

has trace 6= −2, in which case both X(K), Y (K) 6= ∅,
• K is p-adic, under strong assumptions on the reduction and for
p ≥ 7 [HT17, Prop. 36].

We propose to study this in a very special case – isotrivial families
of K3 surfaces over the punctured disc. Let G = CN be a finite cyclic
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group of order N . Fix projective K3 surfaces X and Y over C with
G-actions and consider the associated isotrivial families

X ,Y → ∆1 := Spec(C((t))),

with generic fibers Xt and Yt over K = C((t)), as defined in Section 3.2.

Theorem 1. Suppose that Xt and Yt admit a derived equivalence

Φ : Db(Xt) ' Db(Yt),

over K. If Xt(K) 6= ∅ then Yt(K) 6= ∅.

Related questions were considered by [AAHF21] (hyperkähler four-
folds) and twisted K3 surfaces [ADPZ17]; here the existence of rational
points is not compatible with derived equivalence. The case of torsors
for abelian varieties is addressed in [AKW17].

Our approach is based on the analogy between equivariant geometry
and descent for nonclosed fields. Section 2 presents foundations for de-
rived equivalence in the presence of group actions, with a view toward
equivariant approaches to the Mukai lattice. We link isotrivial families
over fields of Laurent series to equivariant geometry in Section 3. Sec-
tion 4 presents the proof of Theorem 1 through analysis of fixed points;
we close with a discussion of connections with the Burnside formalism
and open questions.

Acknowledgments: The first author was partially supported by Si-
mons Foundation Award 546235 and NSF grant 1701659, the second
author by NSF grant 2000099. We are grateful to Andrew Kresch
for his help towards a correct formulation of equivariant criteria, to
Nicolas Addington for his comments on descending equivariant equiv-
alences, and to Barry Mazur for his suggestion to find examples along
the lines of Example 6.

2. Generalities

2.1. Equivariant derived equivalence. We follow [Plo07] and refer
the reader to [KS15] for a more general approach.

Let k be an algebraically closed field of characteristic zero and X
a smooth projective variety over k equipped with the action of a fi-
nite group G. We consider the bounded derived category Db(X,G)
of G-equivariant complexes of coherent sheaves on X, i.e., objects are
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pairs P = (P, ρ) consisting of complexes P of coherent sheaves and G-
linearizations ρ compatible with differentials [Plo07]. This is compati-
ble with intrinsic formulations of G-actions on triangulated categories
[Ela11, §9], under our assumptions.

Suppose that X and Y are smooth projective varieties with G-
actions. Given an element

P = (P, ρ) ∈ Db(X × Y,G×G)

there is an equivariant Fourier-Mukai transform

FMP(−, G) : Db(X,G)→ Db(Y,G),

obtained by pulling back via projection to X, tensoring by P , and
pushing forward via projection to Y [Plo07, § 1.2]. This operation
makes sense [Plo07, Lemma 5] provided P is equivariant for the diago-
nal G∆ ⊂ G×G only, and the equivariant Fourier-Mukai transform is
compatible with the ordinary Fourier-Mukai transform associated with
P . (In other words, we can forget the G-actions.) Furthermore, if P
induces an equivalence of ordinary derived categories then P induces
an equivalence of the equivariant derived categories.

We assume that G acts faithfully on X and Y . Conversely, suppose
that P ∈ Db(X × Y ) induces an equivalence. When can it be lifted to
an equivariant derived equivalence? It is necessary that P be invariant
under the diagonal G-action as an element of the derived category,
i.e., there exist quasi-isomorphisms from (g, g)∗P to P for each g. By
[Plo07, Lem. 4], each kernel P inducing an equivalence must be simple,
i.e., every automorphism of P as an element of the derived category may
be represented as rescaling of a representative complex. In particular,
if P is G-invariant as an element of the derived category then the
underlying complex of sheaves is G-invariant. Using the identification
Aut(P ) = Gm, there is a cocycle α ∈ H2(G,Gm) governing whether
the G-invariant P admits a G-action; it is necessary and sufficient
that the resulting cocycle α = 0 [Plo07, Lem. 1]. When G is cyclic,
H2(G,Gm) = 0 and α vanishes automatically.

If P does lift to an equivariant complex P = (P, ρ) then this typically
is not unique. We can tensor ρ freely with any character of G.

2.2. Specialization to K3 surfaces. We retain the notation of Sec-
tion 2.1 and assume that X and Y are K3 surfaces with Mukai lattices
H̃(X,Z) and H̃(Y,Z). Suppose that X and Y are derived equivalent,
with the equivalence realized by an isomorphism

i : Y
∼−→Mv(X),
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where
v = (r,D, S) ∈ H0(X,Z)⊕ H2(X,Z)⊕ H4(X,Z)

is the Mukai vector of a moduli space of vector bundles. See [Huy06,
Prop. 10.10] for more details; in particular, since v induces a derived
equivalence, r and s are relatively prime and we may assume r > 0.
The kernel P ∈ Db(X × Y ) inducing the equivalence may be inter-
preted as a universal sheaf over X ×Mv(X). We have suppressed the
polarization from the notation because it is irrelevant for our analysis;
under our assumptions, any ample line bundle will yield a fine moduli
space parametrizing stable sheaves [Huy06, Prop. 10.20].

Suppose now that X and Y come with faithful actions by a finite
group G, where v is G-invariant so that Mv(X) admits a G-action.
Here, we are implicitly using a G-invariant polarization so stability is
compatible with the G action.

Fix an equivariant isomorphism i : Y
∼→ Mv(X) as above. This is

not sufficient to produce an equivariant derived equivalence between
X and Y . The issue is the existence of an equivariant universal sheaf
E → X ×Mv(X). Given an arbitrary universal sheaf E, simplicity of
the sheaves parametrized by Mv(X) yields

g∗E ' E ⊗ p∗2Lg, g ∈ G,
where Lg is a line bundle on Mv(X). The data (Lg)g∈G defines an ele-
ment in H1(G,Pic(Mv(X))). Assuming this vanishes, we can produce
an invariant kernel P on X × Y . As we have seen, the obstruction to
lifting P to an equivariant complex P then lies in H2(G,Gm).

Both these obstructions are encoded by

ker
(

Br(Mv(X), G)→ Br(Mv(X))
)

in the equivariant Brauer group, computed by a spectral sequence with
E2-terms [HT22, § 2.3]

H2(G,Gm) and H1(G,Pic(Mv(X))).

Ploog’s cocycle α lies in the kernel of the natural arrow

H2(G,Gm)→ Br(Mv(X), G)

induced by the structure map of Mv(X). This vanishes when Mv(X)
admits a fixed point.

Mukai [Muk87] and Orlov [Orl97, Th. 3.3] have shown that K3 sur-
faces X and Y are derived equivalent if and only if there is an isomor-
phism of transcendental lattices

T (X) ' T (Y ),
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as Hodge structures. This does not suffice in the equivariant case:

Proposition 2. Let X and Y be complex projective K3 surfaces with
faithful actions by a finite group G. Then we have a sequence of impli-
cations:

(1) there is a G-equivariant derived equivalence Db(X) ' Db(Y );
(2) there is an isomorphism of Mukai lattices

H̃∗(X,Z) ' H̃∗(Y,Z)

respecting the Hodge structures and the G-actions;
(3) there is a G-equivariant isomorphism

T (X) ' T (Y )

of transcendental lattices, compatible with Hodge structures.

Proof. Suppose that X and Y are equivariantly derived equivalent.
Then there is an isomorphism i : Y ' Mv(X) such that the universal
sheaf

E → X ×Mv(X)

admits a G-linearization ρ such that FM(E,%) is an equivalence. The
cohomological Fourier-Mukai transform and i induce an isomorphism

i∗ ◦ FME : H̃∗(X,Z)→ H̃∗(Y,Z)

taking v to (0, 0, 1). The homomorphism i∗ ◦ FME induces the desired
isomorphism of transcendental cohomology groups. �

Reversing the first implication in Proposition 2 is not possible pre-
cisely when the obstruction α ∈ H2(G,Gm) is nonzero. Since the ob-
struction α vanishes in the cyclic case we have:

Corollary 3. Suppose that X and Y are complex projective K3 surfaces
with faithful actions by a cyclic group G. Then there is a G-equivariant
derived equivalence between them iff there is an isomorphism of their
Mukai lattices respecting the Hodge structures and the G-actions.

Remark 4. The second implication in Proposition 2 also fails to be an
equivalence in general. To extend an isomorphism T (X) ' T (Y ) to an
isomorphism of Mukai lattices, we require a G-equivariant isomorphism
of lattices

Pic(X)
∼−→ Pic(Y )
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compatible (on discriminant groups) with the given isomorphism of
transcendental lattices. By definition, T (X) is the orthogonal comple-
ment to Pic(X) in H2(X,Z). Example 5 shows such a homomorphism
might not exist.

Example 5. Given a polarized K3 surface of degree two (X, f), f 2 = 2,
the linear series |f | induces a double cover X → P2 [SD74, Th. 3.1 and
Prop. 8.1], branched over a smooth plane curve of degree six. The
covering involution ι acts on f⊥ ⊂ H2(X,Z) by multiplication by −1.

Let X be a K3 surface surface with

Pic(X) =
f1 f2

f1 2 5
f2 5 2

,

with involutions ι1 and ι2 associated with the double covers X → P2

induced by f1 and f2. Each involution acts on the primitive cohomology
– hence the transcendental cohomology T (X) – by −1. However, we
shall show there is no automorphism of the Mukai lattice

a : H̃(X,Z)→ H̃(X,Z)

compatible with Hodge structures and conjugating these involutions.
In particular (3) does not imply (2) in Proposition 2.

We argue by contradiction; assume such an a existed. We have

ι1(2f2 − 5f1) = −(2f2 − 5f1) ι2(2f1 − 5f2) = −(2f1 − 5f2),

the unique (up to sign) elements of the Mukai lattice that are algebraic
with eigenvalue −1. Thus we must have

a(2f2 − 5f1) = ±(2f1 − 5f2).

The discriminant group d(Pic(X)) = Hom(Pic(X),Z)/Pic(X) is

Z/21Z ' Z/3Z× Z/7Z,

with generators d1 = f1−f2
3

and d2 = f1+f2
7

. Our distinguished elements
give generators

2f2 − 5f1

21
= −d1 + 3d2

2f1 − 5f2

21
= d1 − 4d2.

Note that these are not equal, even up to sign. We conclude that any
automorphism of the algebraic classes

Pic(X)⊕ H0(X,Z)⊕ H4(X,Z) ⊂ H̃(X,Z)
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conjugating ι1 and ι2 acts on the discriminant group by an element
6= ±1. In particular, this applies to

a|Pic(X)⊕H0(X,Z)⊕H4(X,Z)

The only automorphisms of the transcendental cohomology T (X) –
assuming X is general with the stipulated Picard group – are multi-
plications by ±1. These are the only elements commuting with the
action of the Hodge group of a general such X, which is the identity
component of the orthogonal group associated with the intersection
form. Thus

a|T (X) = ±1

and the same holds true on the discriminant group. This gives a con-
tradiction: Nikulin’s theory gives an isomorphism

d(T (X)) ' d(Pic(X))

and any automorphism of the full cohomology (compatible with the
Hodge decomposition) must respect this isomorphism.

Remark 4 is reminiscent of [HS05, Exam. 4.11]: Isomorphisms of
transcendental cohomology groups of twisted K3 surfaces need not lift
to twisted derived equivalences.

We close with examples of intriguing derived equivalences relating
K3 surfaces with involution:

Example 6. Recall that the derived category of any smooth projective
variety X has an involution

iX : Db(X) → Db(X)
E 7→ (E [1])∨

,

i.e., the composition of “shift-by-one” and “taking duals”. When X is

a K3 surface, iX acts on H̃(X,Z) by the identity on H2 and multipli-
cation by −1 on H0 and H4. Note that iX is not an autoequivalence
– indeed it fails to be orientation-preserving, a necessary condition for
autoequivalences [HMS09, §4].

We seek degree two K3 surfaces (X, f) and (Y, g) (cf. Example 5)
with associated involutions

ι : X → X, κ : Y → Y,

such that (Db(X), iX◦ι) and (Db(Y ), iY ◦κ) are C2-equivariantly derived
equivalent but (X, f) and (Y, h) are not isomorphic. Analogous to
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Corollary 3, we would like equivariant isomorphisms of Mukai lattices
(with Hodge structures)

a : H̃(X,Z) ' H̃(Y,Z)

where there is no equivariant isomorphism

H2(X,Z) 6' H2(Y,Z).

These may be produced using the theory of binary quadratic forms
[Bue89]. Consider even, negative definite, rank-two lattices represented
by symmetric integer matrices A and B. We say that they are in the
same genus if they are p-adically equivalent for all primes p; this is
equivalent [Nik79b, Cor. 1.13.4] to stable equivalence

A⊕ U ' B ⊕ U, U =

(
0 1
1 0

)
.

There are criteria, expressed via class groups, for the existence of non-
isomorphic lattices in the same genus; see [Bue89, App. 1] for tables.

We seek examples of such lattices A and B, subject to the condition
that A and B do not represent −2. This last assumption ensures that
the divisors f and g are ample. For instance, consider even positive
definite binary forms of discriminant −47; the reduced forms are:(

2 1
1 24

)
,

(
4 1
1 12

)
,

(
4 −1
−1 12

)
,

(
6 1
1 8

)
,

(
6 −1
−1 8

)
.

Only the first of these represents 2 so we could take

A = −
(

4 1
1 12

)
, B = −

(
6 1
1 8

)
.

We construct the desired K3 surfaces using surjectivity of the Torelli
map. Choose a K3 surface X with

Pic(X) = Zf ⊕ A

with involution ι fixing f and acting on A and T (X) via −1. There
exists a second K3 surface Y with

Pic(Y ) = Zg ⊕B

and T (X) ' T (Y ). This admits an involution κ acting on B and T (Y )
via −1. There is no isomorphism Pic(X) ' Pic(Y ) compatible with
the involutions. However the stable equivalence of A and B induces

H̃(X,Z) ' U ⊕ H2(X,Z) ' U ⊕ H2(Y,Z) ' H̃(X,Z),
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compatible with ι and κ. The involutions act on the U summands via
multiplication by −1.

We will explore this further in [HT23].

3. Isotrivial families

3.1. Construction. Let X be a projective K3 surface and

G = CN ⊆ Aut(X)

a finite cyclic subgroup of the automorphism group of X. Let ∆2 =
Spec(C[[τ ]]) be a formal disc on which G acts via

τ 7→ ζτ, ζ = exp(2πi/N).

The G-equivariant projection

X ×∆2 → ∆2

induces an isotrivial family

π : X := (X ×∆2)/G→ ∆1 := ∆2/G.

Let K = C((t)) and L = C((τ)) denote the fields associated with ∆1

and ∆2. We regard Xt as a K3 surface over K; a K-rational point of
Xt is equivalent to a section of π.

Proposition 7. Suppose that X and Y are complex K3 surfaces with
faithful actions of G = CN ; assume they are G-equivariantly derived
equivalent. Then Xt and Yt are derived equivalent over K.

Actually, our proof will give more: It suffices to assume that there
exists a G-invariant complex P inducing the equivalence between X
and Y (see Section 2).

Proof. Realize
i : Y

∼−→Mv(X)

for some Mukai vector v for X, fixed under the G-action. This isomor-
phism may be chosen to be equivariant under the G-action. Letting
τ = N

√
t, we basechange to an isomorphism

Yτ 'Mv(Xτ ).
This descends to an isomorphism

Yt 'Mv(Xt),
where the latter is the coarse moduli space. To complete the proof, we
need that Mv(Xt)× Xt admits a universal sheaf. Since the underlying
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sheaves are simple, this universal sheaf is unique up to tensoring by line
bundles on Mv(Xt) – a trivial line bundle given our assumption that P
is G-invariant. Thus the obstruction to descending the data associated
with P to a sheaf defined over K lives in the Brauer group of K. The
triviality of Br

(
C((t))

)
shows this obstruction vanishes. �

3.2. Rational points and fixed points.

Proposition 8. The morphism

π : X → ∆1

admits a section if and only if the action of G on X admits a fixed
point.

Proof. If π admits a section σ1 : ∆1 → X then the induced section
σ2 : ∆2 → X ×∆1 ∆2 is G-invariant, whence σ2(0) is fixed.

Suppose X has a fixed point. Then the resulting constant section of
X ×∆2 → ∆2 is invariant under the action of G and thus descends to
a section of (X ×∆2)/G→ ∆2/G. �

4. Fixed point analysis

Let X be a K3 surface over an algebraically closed field of charac-
teristic zero and σ ∈ Aut(X) an automorphism of order N . In the
following sections, we analyze the structure of the fixed point locus

Xσ := {x ∈ X |σ(x) = x},
with the goal of identifying σ such that Xσ = ∅.

4.1. Cyclic automorphisms. We review basic properties of finite au-
tomorphisms due to Nikulin [Nik79a]. Suppose that G = 〈σ〉 = CN
acts on a K3 surface X. We have an exact sequence

(4.1) 0→ Cn → G→ µm → 0, nm = N,

where Cn is the kernel of the representation of G on the symplectic
form. Elements in Cn are called symplectic; when Cn = 1, the action
is called purely nonsymplectic. We write N = n ·m, to emphasize the
symplectic versus nonsymplectic actions.

Proposition 9. Let X1 and X2 derived equivalent K3 surfaces. As-
sume that both carry a faithful action of G = CN and that the derived
equivalence is compatible with G. Then the factorizations

N = n1m1 = n2m2,
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encoding the symplectic elements, are equal, i.e.,

n1 = n2 and m1 = m2.

Proof. We can read off the symplectic automorphisms from the action
on the Mukai lattice, as the symplectic form is distinguished in its
complexification. �

4.2. Fixed point formulas. Let G = 〈σ〉 be a cyclic group acting on
a K3 surface X. Let

σ∗ : H̃(X,Z)→ H̃(X,Z)

be the induced action on the Mukai lattice, and

χ(σ) := Tr(σ∗)

the corresponding trace.
The topological fixed point formula takes the form:

(4.2) χ(Xσ) = χ(σ),

Since χ(σ) may be read off from the action on the Mukai lattice,
χ(Xσ) is an invariant of G-equivariant derived equivalence.

Lemma 10. Let N = n ·m with n ≥ 2. Then Xσ is empty or a finite
set of isolated points, and

χ(Xσ) = #Xσ.

Proof. By [Nik79a], symplectic automorphisms do not contain curves in
their fixed locus (a detailed description of possible Xσ is in Section 4.3).

�

The complex Lefschetz fixed point formula involves sums

(4.3)
∑
p

a(p) +
∑
C

b(C),

of contributions from fixed points and fixed curves; here ζ = ζN (see,
[AS68, p. 567]). The corresponding contributions are given by

a(p) =
1

(1− ζ i)(1− ζj)
,

for fixed points p with weights βp = (i, j) in the tangent bundle at p,
and

b(C) =
1− g(C)

1− ζ−r(C)
− ζ−r(C)

(1− ζ−r(C))2
C2,
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where g(C) is the genus of C, and r(C) is the weight in the normal
bundle to C. For K3 surfaces we obtain

(4.4) 1 + ζ−m =
∑
i,j

aij
(1− ζ i)(1− ζj)

+
∑
C⊆Xσ

(1− g(C))
1 + ζn

(1− ζn)2
,

where

• aij is the number of σ-fixed points p with weights βp = (i, j) in
the tangent bundle at p,

i+ j ≡ n (mod N), i, j 6= 0,

• C ⊆ Xσ are (smooth irreducible) curves,

(see [Nik79a] or [ACV20, Lemma 1.1]).
Formula (4.4) immediately implies:

Lemma 11. Let N = n ·m with m 6= 2. Then

Xσ 6= ∅.

Proof. Consider equation (4.4). If m 6= 2 then the left-hand side is
nonzero. It follows that the sums on the right-hand side are nonempty.
Since these are indexed by fixed points or curves, we conclude that
Xσ 6= ∅. �

Lemma 11 shows that we always have fixed points in the symplec-
tic case. In the purely nonsymplectic case, where N = m, or
equivalently, n = 1, Lemma 11 guarantees fixed points, except where
m = N = 2. In this case, the only fixed-point free action is the En-
riques involution. Such an involution is characterized by the sublattice
of its fixed classes (see, e.g., [Nik87], [AS15, Th. 1.1], [AST11, Th.
3.1]):

Pic(X)σ ' U(2)⊕ E8(2).

We turn to the mixed case where m,n > 1. Lemma 10 guarantees

that the existence of σ-fixed points is governed by the trace of σ on H̃,
i.e., is a derived invariant. This completes the proof of Theorem 1.

4.3. Role of classification in the proof. Despite initial expecta-
tions, the proof of Theorem 1 does not hinge on classification. At
the same time, the comprehensive enumeration in [BH21] does raise
interesting questions.

Can we explicitly describe all types of cyclic automor-
phisms with Xσ = ∅? Deeper arithmetic problems –
extensions to more complicated isotrivial families or the
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p-adics – would require understanding of all finite groups
of automorphisms.

We present indicative examples of actions with Xσ = ∅.
Nikulin [Nik79a] classified symplectic automorphisms of a K3 surface

X of order n (in the notation above, N = n and m = 1): We necessarily
have n ≤ 8 and Xσ 6= ∅. Moreover, Xσ is a finite set of isolated points,
whose structure is given by

• n = 2 : 8 fixed points
• n = 3 : 6 fixed points
• n = 4 : 4 fixed points (and 4 points with order two stabilizer)
• n = 5 : 4 fixed points
• n = 6 : 2 fixed points (and 4 points with order three stabilizer,

and 6 points with order two stabilizer)
• n = 7 : 3 fixed points
• n = 8 : 2 fixed points (and 2 points with order four stabilizer,

4 points with order two stabilizer).

Mukai [Muk88] gave a classification of all finite groups acting symplec-
tically.

Detailed results are also available for purely nonsymplectic auto-
morphisms of order m. The cases of prime order have been considered
in [AST11], and various other special cases in, e.g., [ACV20], [AS15],
[Dil12], [SyT21], [Tak10]. A complete classification, including an anal-
ysis of possible fixed point configurations, is presented in [BH21, Ap-
pendix B]: Let σ be a purely nonsymplectic automorphism of a K3
surface X of order m. Then

m ∈ {2, . . . , 28} \ {23},

or

m ∈ {30, 32, 33, 34, 36, 40, 44, 48, 50, 54, 66}.
We return to our general situation where CN , N = nm, acts on a

K3 surface, via mth roots of unity on the symplectic form. Lemma 11
allows us to restrict to m = 2.

By [Keu16, Lem. 4.8], m = 2 implies that n 6= 8. For n = 7, the
number of fixed points of the subgroup C7 = 〈σ2〉 ⊂ G is three, thus
we are guaranteed σ-fixed points. For n ≤ 6 there exist fixed-point free
actions. We record:

• N = 2 · 2: Then Xσ is either empty, or it consists of 2, 4, 6,
or 8 points [AS15, Prop. 2]; when Xσ = ∅, the σ∗-action on
H2(X,Q) has eigenvalues 1 and −1 with multiplicities 6 and 8,
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this characterizes such actions [AS15, Prop. 2]. K3 surfaces
with N = 2 · 2 have rk Pic(X) ≥ 14 [AS15, Rema. 1.3]. Exam-
ples of such actions can be found in [AS15, Exam. 1.2].
• N = 3 · 2: Then Xσ is either empty, or it consists of 2, 4, or 6

points [SyT21, Prop. 3.4].
• N = 4 · 2: Here the enumeration of cases is more complicated.

The classification in [BH21] of symplectic actions on K3 sur-
faces lists only maximal actions: If G acts symplectically on a
K3 surface X, consider its saturation, i.e., the largest subgroup
G′ ⊂ Aut(X) such that H2(X,Z)G

′
= H2(X,Z)G – a finite

group acting symplectically on X. Thus the enumeration re-
quires checking many subgroups for the presence of an element
of the prescribed order.

Consider, for instance, the group with GAP id (8,1) from
the second column of Table 3 in [BH21], which lists three types.
The possibilities for χ(σr), for r = 1, 2, 4, are

σ σ2 σ4

0 4 8
2 4 8
4 4 8

• N = 5 ·2: Note that Cn, n = 5, 6, 7 does not appear as the satu-
ration of a mixed action with m = 2 [BH21, Table 3]. However,
there are larger groups admitting cyclic subgroups of order ten
acting on the symplectic form via ±1.

For example, suppose that G is an extension

1→ A6 → G→ µ2 → 1,

where the alternating group is the maximal symplectic sub-
group. Assume that G has GAP id (720,764), which admits
elements of order ten. (Of course, A6 has no such elements!)
There are six different occurences of this group in the classifica-
tion. The one with K3 id (79.2.1.3) has distinguished generator
(in the nomenclature of the data sets supporting [BH21]) σ of
order ten with χ(σ) = 0.

4.4. Relations to Burnside invariants. Brandhorst and Hofmann
[BH21] explore cases where the data from the fixed-point formulas are
insufficient to characterize the automorphism. These are called am-
biguous cases, at least in the purely nonsymplectic context [BH21, §7].
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It would be interesting to consider these from the perspective of the
Burnside group: Given the action of a finite cyclic group G on a K3
surface, there is a combinatorial object consisting of subgroups Gi ⊂ G
indexed by strata Zi ⊂ X with nontrivial stabilizer Gi, labeled by the
induced action on Zi, and the representation type of the action of Gi

on the normal bundle; data of such type are building blocks of equi-
variant Burnside groups introduced in [KT22b]. The tables in [BH21,
Appendix B] list possible configurations of fixed points and curves, for
purely nonsymplectic actions. How much of the Burnside data can be
extracted from the representation of G on the Mukai lattice?

The paper [KT22a] explores such a connection for actions of finite
groups on del Pezzo surfaces.

Another interesting problem is to identify which actions classified
in [BH21] are derived equivalent and even to classify finite groups of
autoequivalences of K3 surfaces [Huy16b]. For example, Ouchi [Ouc21,
§8] has found symplectic autoequivalences of orders 9 and 11 via cubic
fourfolds; these cannot be realized as symplectic actions on K3 surfaces.
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