
LOG FANO VARIETIES OVER FUNCTION FIELDS OF
CURVES

BRENDAN HASSETT AND YURI TSCHINKEL

Abstract. Consider a smooth log Fano variety over the function
field of a curve. Suppose that the boundary has positive normal
bundle. Choose an integral model over the curve. Then integral
points are Zariski dense, after removing an explicit finite set of points
on the base curve.
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1. Introduction

Let k be an algebraically closed field of characteristic zero and B a
smooth projective curve over k with function field F = k(B).

Our point of departure is the following theorem, combining work of
Graber-Harris-Starr and Kollár-Miyaoka-Mori [6, 14]: LetX be a smooth
projective rationally connected variety over F . Then X(F ) is Zariski
dense in X. One central example is Fano varieties, i.e., varieties with
ample anticanonical class, which are known to be rationally connected
(see [13, V.2.13]). In this context, it is not necessary to pass to a field
extension to get rational points.

When F is a number field, it may be necessary to pass to a finite
extension to get rational points; there exist Fano varieties over Q without
rational points. Moreover, even for Fano threefolds potential Zariski
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density, i.e., density after a finite extension of F , is unknown in general.
For some positive results in this direction see [8], [4] and [9].

In this paper we study Zariski density of integral points. Consider pairs
(X,D) consisting of a variety X and a divisor D ⊂ X, and fix integral
models π : (X ,D) → B (see Section 2 for the definition). An F -rational
point s ∈ X \ D gives rise to a section s : B → X of π, meeting D in
finitely many points. As we vary s,

s−1(D) = π(s(B) ∩ D) ⊂ B

may vary as well. Fixing a finite set S ⊂ B, an S-integral point of (X ,D)
is an F -rational point of X such that s−1(D) ⊂ S (as sets).

Theorem 1. Let F be the function field of a smooth projective curve B/k.
Let (X,D) be a pair over F consisting of a smooth projective variety X
and a smooth divisor D ⊂ X. Assume that

• D is rationally connected;
• the divisor class of the normal bundle c1(ND/X) is numerically

equivalent to a nontrivial effective divisor.

Given a model π : (X ,D) → B, let S be a nonempty finite set of points in
B containing the images of the singularities of X and D. Then S-integral
points of (X ,D) are Zariski dense.

Note however that we allow points of bad reduction outside S. For
example, let X = P2

[x,y,z] × P1
[s,t] and

D = {s(x2 + yz) + t(y2 + xz) = 0}.
While X andD are nonsingular the fiberD[s,t] is singular when s3+t3 = 0.

Let KX denote the canonical class of X and KX +D the log canonical
class of (X,D). The pair (X,D) is log Fano if −(KX +D) is ample. By
adjunction

(KX +D)|D = KD

so −KD is ample. Thus D is Fano hence rationally connected [14] [13,
V.2.13].

Corollary 2. Let (X,D) be a log Fano variety over F with X and D
smooth. Assume that the divisor class c1(ND/X) is numerically equivalent
to a nontrivial effective divisor. For each integral model and collection of
places as specified in Theorem 1, integral points are Zariski dense.

We expect that the hypothesis on ND/X is not needed. For example,
our argument does not apply to the case X = P1 and D = ∞, where
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density of integral points is immediate. And there are log Fano varieties
(X,D) with ND/X negative, e.g., (X,D) = (Fn,Σ0) where Fn is the
Hirzebruch surface admitting a section Σ0 with self-intersection −n < 0.

Furthermore, the condition that (X,D) be log Fano can be weakened.
There are numerous examples of varieties X with trivial canonical class
and Zariski-dense set of rational points over number and function fields.
However, the deformation-theoretic approach here is not directly appli-
cable. It is an open problem to characterize pairs with potentially dense
integral points; Campana [5] has a conjectural description of these, at
least when D = ∅.

Our result is a partial converse to the function-field version of Vojta’s
conjectures: If (X,D) is defined over a number field F and KX + D is
ample then integral points are not Zariski dense (see [16] for the number
field case, with connections to value-distribution theory). Very few den-
sity results for integral points over number fields are available, most of
them in dimension two (see [15], [3], [10]).

Acknowledgments: We are grateful to Dan Abramovich for helpful
conversations on the deformation theory used in this article. The con-
structive comments of the referees also greatly improved its exposition
and organization. The first author appreciates the hospitality of the
Mathematics Institute of the University of Göttingen. He was partially
supported by National Science Foundation Grants 0554491 and 0134259
and an Alfred P. Sloan Research Fellowship. The second author was
partially supported by National Science Foundation Grants 0554280 and
0602333.

2. Integral models and reduction to the smooth case

Definition 3. A pair (X,D) consists of a smooth projective variety and
a reduced effective divisor with normal crossings.

Let B be a smooth projective curve defined over an algebraically closed
field k of characteristic zero and F = k(B) its function field.

Definition 4. Let (X,D) be a pair defined over F . An integral model

π : (X ,D) → B

consists of a flat proper morphism from a normal variety πX : X → B
with generic fiber X, and a closed subscheme D ⊂ X such that πD :=
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πX |D : D → B is flat and has generic fiber D. A point b ∈ B is of good
reduction if the fibers Xb = π−1

X (b) and Db = π−1
D (b) are smooth.

We emphasize thatD has no irreducible components contained in fibers
of πX .

While in applications the model is often specified a priori, for each
projective embedding of (X,D) we can construct a natural model: The
properness of the Hilbert scheme yields extensions ofX andD to schemes
flat and projective over B. Locally on B, these are obtained by ‘clearing
denominators’ in the defining equations of X and D. Normalizing if
necessary, we obtain a model of (X,D).

Definition 5. Let S be a finite subset of B. An S-integral point of
(X ,D) is a section s : B → X such that s−1(D) ⊂ S as sets.

Thus if D = ∅ then integral points are just sections of X → B, which
are F -rational points of X.

The following proposition is straightforward:

Proposition 6. Let (X1,D1) and (X2,D2) be integral models of (X,D).
Let T ⊂ B denote the set over which the birational map

(X1,D1) 99K (X2,D2)

fails to be an isomorphism. Then S-integral points of (X1,D1) are mapped
to (S ∪T )-integral points of (X2,D2). If S-integral points of (X1,D1) are
Zariski dense then (S ∪ T )-integral points of (X2,D2) are Zariski dense.

In particular, if we allow ourselves to enlarge the set S then Zariski-
density of integral points is independent of the model.

We discuss how Theorem 1 can be reduced to the case of nonsingular
integral models:

Definition 7. A good resolution of an integral model is a birational
proper morphism from a pair

ρ : (X̃ , D̃) → (X ,D)

such that

• X̃ is smooth and D̃ is normal crossings;
• ρ−1(D) = D̃;
• ρ is an isomorphism over the open subset of (X ,D) where X is

smooth and D is normal crossings.

Remark 8.
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(1) D̃ may very well have components contained in fibers over B, so
(X̃ , D̃) is not necessarily an integral model.

(2) The normality condition in Definition 4 of an integral model guar-
antees that for each b ∈ B and each irreducible component of Xb,
the total space X is smooth at the generic point of that compo-
nent. In particular, ρ is an isomorphism over a dense open subset
of each fiber of X .

Let (X̃ , D̃) → (X ,D) be a good resolution, S ⊂ B a finite set contain-
ing the images of the singularities of X and D, and D̃◦ the union of the
components of D̃ dominating B. We have:

• D̃◦ is normal crossings;
• images of S-integral points of (X̃ , D̃◦) under ρ are S-integral

points of (X ,D).

We have a bijection
ρ : X̃ \ D̃ → X \ D,

so S-integral points of (X ,D) correspond to sections

{s̃ : B → X̃ : s̃−1(D̃) ⊂ S}.
Since the fibral components of D̃ lie over S, S-integral points of (X ,D)
are equal to S-integral points of (X̃ , D̃◦).

This analysis and resolution of singularities in characteristic zero re-
duces Theorem 1 to the following special case:

Theorem 9 (Smooth Case). Retain the assumptions of Theorem 1 and
assume in addition that X and D are nonsingular. Then for any nonempty
S ⊂ B the S-integral points in (X ,D) are Zariski dense.

Here is a roadmap for the rest of the paper. Our main strategy is to
produce ‘good’ sections in the boundary s : B → D that deform to a
Zariski-dense collection of S-integral points. The ‘deformation of combs’
technique of [6, §2] yields a section s1 : B → D such that the normal
bundle Ns1(B)/D is globally generated with no higher cohomology. Since
c1(ND/X) is effective and nonzero, we may assume that the teeth of our
combs have positive intersection numbers with D. Thus we can construct
a section s2 : B → D such that Ns2(B)/X is globally generated with no
higher cohomology. Finally, for any prescribed point p ∈ B, we produce a
section s3 : B → D such that s∗3OX (D) ' OB(Np) for some N � 0. This
entails controlling the divisor class of the points over which we attach our
teeth.
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To obtain density of S-integral points, we control how deformations of
s3(B) meet D. The first step is to restrict to deformations st : D → X
such that s∗tOX (D) ' OB(Np). The key technical tool is the ‘Atiyah ex-
tension’ classifying first-order deformations of varieties with a line bun-
dle. Taking this into account, we introduce new notions of free and very
free curves in Section 3. Section 4 deduces smoothing results for mor-
phisms of curves respecting line bundles; these generalize the results for
free and very free curves in [13, II.7]. Section 5 is devoted to the proof
of Theorem 9.

3. Atiyah classes and free curves

Assume that k is algebraically closed. Let B be a smooth projective
variety, ψ : Y → B a smooth surjective morphism from a quasi-projective
variety, and L a line bundle on Y .

Consider the dual Atiyah extension [2, pp. 196] [11, pp. 243]

0 → Ω1
Y → FY,L → OY → 0.

Up to sign, it is classified by the first Chern class

±c1(L) ∈ H1(Y ,Ω1
Y) = Ext1(OY ,Ω

1
Y ).

There is an induced relative Atiyah extension

0 → Ω1
Y/B → FY,L/B → OY → 0.

These are all locally free as ψ is smooth. Writing EY,L/B for the dual to
FY,L/B, we obtain

0 → OY → EY,L/B → TY/B → 0.

Definition 10. Let C be a nodal projective curve. A nonconstant mor-
phism g : C → Y is L-free over B if for each q ∈ C

H1(C, g∗EY,L/B ⊗ Iq) = 0.

It is L-very free over B if for each subscheme Σ ⊂ C of length two

H1(C, g∗EY,L/B ⊗ IΣ) = 0.

Proposition 11. Assume that k is of characteristic zero. Let b ∈ B and
y ∈ Yb = ψ−1(b). Suppose Yb is a proper rationally connected variety.
Then there exists a morphism g : P1 → Yb that is L-free over B, with
image containing y. If L|Yb is numerically equivalent to a nontrivial
effective divisor then we can choose g to be L-very free over B.
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Proof. There exists a very free morphism g : P1 → Yb [13, IV.3.9.4],
with g∗TY/B is ample. Moreover, given any finite collection of points
y1, . . . , ym ∈ Y , we may assume the image of g contains these points.

We have the extension

0 → OP1 → g∗EY,L/B → g∗TY/B → 0.

It follows that each summand of g∗EY,L/B is nonnegative, which implies
L-freeness.

We prove L-very freeness. Assume H is an effective nonzero divisor
corresponding to L. Choose g such that its image contains y, some point
y′ in the support of H, and some point y′′ not in the support of H. In
particular, the image is not contained in any component of H. It follows
that g∗L has positive degree.

If OP1 were a summand of g∗EY,L/B then we would have

g∗EY,L/B ' OP1 ⊕ g∗TY/B,
i.e., the Atiyah extension would split after pull-back. The inclusion
TP1 ↪→ g∗TY/B induces the Atiyah extension on P1 associated with g∗L:

0 → OP1 → EP1,g∗L → TP1 → 0

which splits as well. However, this is classified by

±c1(g∗L) ∈ H1(P1,Ω1
P1) = Ext1(TP1 ,OP1),

which is nontrivial because L is effective and nonzero. (Here we are using
the assumption that the base field is of characteristic zero.) �

4. Spaces of morphisms and comb constructions

We retain the notation introduced in Section 3.
Let C0 be a nodal projective connected curve. Fix a morphism f0 :

C0 → Y and write
g0 = ψ ◦ f0 : C0 → B.

Let (S, 0) be a smooth scheme with distinguished closed point. Consider
a flat projective morphism $ : C → S such that $−1(0) ' C0 and an
S-morphism

C g−→ B × S
$ ↘ ↙ π′

S

S

such that g|C0 = g0. (Here π′S is the projection to S.) Fix a line bundle
M on C such that M|C0 ' f ∗0L.
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Let MorB×S(C,Y × S) denote the morphisms

C h−→ Y × S
g ↘ ↙ (ψ,IdS)

B × S

over B×S; each connected component is a quasi-projective scheme over
S. Let PicC/S denote the relative Picard scheme [1, Theorem 7.3], which
is locally of finite type over S. We have a morphism

MorB×S(C,Y × S) → PicC/S
h 7→ (πY ◦ h)∗L⊗M−1

where πY : Y × S → Y is the projection. The fiber over the zero-section
is a closed subscheme

Mor•B×S(C,Y × S) ⊂ MorB×S(C,Y × S).

Finally, we have

MorB×S((C,M), (Y × S, π∗YL)) = {(h, ι) : h ∈ Mor•B×S(C,Y × S),

ι : (πY ◦ h)∗L
∼→M}

which is a Gm-torsor over Mor•B×S(C,Y×S). This keeps track of a choice
of identification between M and the pull-back of L.

Proposition 12. The relative tangent space of

MorB×S((C,M), (Y × S, π∗YL)) (resp. MorB×S(C,Y × S))

over S at [f0] is isomorphic to

Γ(C0, f
∗
0EY,L/B) (resp. Γ(C0, f

∗
0TY/B)).

The obstruction space is contained in

H1(C0, f
∗
0EY,L/B) (resp. H1(C0, f

∗
0TY/B)).

In particular, the morphism space is smooth over S at f0 provided the
corresponding first cohomology group vanishes.

Proof. The description of the tangent and obstruction spaces is an appli-
cation of the technique of [11, §2.3]. Using the smoothness criterion of [7,
17.5.1-2], it suffices to show that the schemes are flat over S with regular
geometric fibers. The morphism spaces are flat over S at f0 provided
their fibers over 0 have the expected dimension there [13, I.2.17]. When
the first cohomology group vanishes, the dimension of the fiber equals
the dimension of its tangent space. �
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Remark 13. Instead of working with pairs consisting of varieties and line
bundles relative to B, we could work with varieties relative to B×BGm.
Here BGm is the classifying stack of the multiplicative group; morphisms
Y → BGm correspond to line bundles on Y . The Atiyah extension of
Y/B determined by L coincides with the relative tangent bundle of the
morphism Y → B × BGm. (We are grateful to one of the referees for
suggesting this point of view.)

Definition 14. A comb is a nodal projective curve

C0 = B′ ∪ T1 ∪ . . . ∪ Tr
where B′ is smooth and connected and each Ti is a smooth rational curve
meeting B′ in one point b′i. The Ti are pairwise disjoint.

Proposition 15. Let B′ ⊂ Y be a smooth projective curve satisfying
H1(B′, EY,L/B|B′) = 0; assume that B′ meets a proper separably ratio-
nally connected fiber of ψ. Suppose we are given

• a comb C0 with handle B′ and teeth Ti;
• a morphism f0 : C0 → Y, such that

(1) f0|B′ extends the inclusion B′ ⊂ Y;
(2) each restriction Fi := f0|Ti is L-free and contained in a

proper fiber of ψ.

Then for any

• smooth scheme with distinguished closed point (A, 0);
• flat proper morphism $ : C → A with distinguished fiber C0;
• morphism g : C → B × A over A such that g|C0 = ψ ◦ f0;
• line bundle M on C such that M|C0 ' f ∗0L;

there exists an étale neighborhood (S, 0) of (A, 0) and a morphism f :
C → Y × S over B × S such that f ∗(π∗YL) 'M and f |C0 = f0.

Proof. Since the teeth are L-free, EY,L/B pulls back to a semi-positive
vector bundle on each Ti. An inductive argument [13, II.7.5] reduces the
cohomology over the comb to the cohomology of the restriction to the
handle

H1(C0, EY,L/B|C0) ' H1(B′, EY,L/B|B′) = 0.

We then apply Proposition 12 to construct f . By construction,

f0 ∈ MorB×A((C,M), (Y × A, π∗YL))

which is smooth over A because of the vanishing of the higher cohomology
of EY,L/B|C0. Thus for a suitable étale neighborhood (S, 0) of the origin
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in A we have a section

[f ] : S → MorB×S((C,M), (Y × S, π∗YL))

with [f ]0 = f0. (We use the same notation for C and M and their
restrictions over S.) The universal property of our morphism space gives

f : C → Y×S over B×S and an identification ι : (πY ◦f)∗L
∼→M|S. �

Remark 16. Alternatively, we could have analyzed the deformations of
f0 : C0 → Y using the normal sheaf Nf0 . This works best when f0 is an
embedding, which can be achieved when the fibers of ψ have dimension
≥ 3. Then we can regard f0(C0) as a point in the Hilbert scheme Hi lb
of nodal curves in Y . Suppose in addition that B′ ⊂ Y is a section of
ψ : Y → B. Then there exists a morphism

α : Hi lb → Pic(B)
Cs 7→ det(R•ψ∗(L⊗OCs)),

where det is the determinant of cohomology, which is defined for perfect
complexes (see [12, Theorem 2]). A deformation argument similar to
ours can be used to produce smooth curves in suitable fibers of α corre-
sponding to sections σ : B → Y with σ∗L = L|B′. (We are grateful to
one of the referees for pointing out this approach.)

Proposition 17. Let B′ ⊂ Y be a smooth projective curve. There exists
an integer n > 0 with the following property:

Suppose we are given

• a comb C0 with handle B′ and teeth T1, . . . , Tq attached at b′1, . . . , b
′
q;

• a morphism f0 : C0 → Y, such that
(1) f0 is an embedding along B′ and extends the inclusion B′ ⊂

Y;
(2) each Fi := f0|Ti is L-free and contained in a proper fiber of

ψ;

Then there exists a subset {i1, . . . , ir} ⊂ {1, . . . , q} with r ≥ q − n such
that

f ′0 := f0|C ′
0 : C ′

0 → Y , C ′
0 := B′ ∪ Ti1 ∪ . . . ∪ Tir ⊂ C0

deforms to a morphism f ′t : B′ → Y with

(f ′t)
∗L ' L|B′ ⊗OB′(ei1b

′
i1

+ . . .+ eirb
′
ir), ei = degF ∗

i L

and ψ ◦ f ′t = ψ|B′. Furthermore, if the Fi are assumed to be L-very free
then for suitable n > 0 we can take f ′t to be L-free over B.
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Proof. We first construct a family $ : C → Ar deforming C0 to B′ (see
[13, pp. 156]). Consider the smooth codimension-two subvariety

Z = ∪ri=1({b′i} × {ti = 0}) ⊂ B′ × Ar

and the blow-up

C := BlZ(B′ × Ar)
σ→ B′ × Ar

with exceptional divisors E1, . . . , Er. The composed morphism

$ : C → B′ × Ar → Ar

is still flat with $−1(0) ' C0; every fiber of $ is a comb with handle B′.
We introduce a line bundle on this family: Consider

L′ = L|B′ ⊗OB′(e1b
′
1 + . . .+ erb

′
r)

and write

M = (πB′ ◦ σ)∗L′ ⊗OC(−e1E1 − . . .− erEr).

Note that Cs ' B′ and M|Cs ' L|B′, i.e., our modification leaves the
fibers away from the coordinate axes of Ar unchanged.

We apply the smoothing technique of [13, II.7.9] to the morphism space

MorB×Ar((C,M), (Y × Ar, π∗YL)).

This gives a curve containing the origin 0 ∈ T ⊂ Ar, whose generic point
is contained in at most c ≤ n of the coordinate hyperplanes, such that
the restricted family CT := C ×Ar T → T admits a morphism

CT
f−→ Y × T

↘ ↙
B × T

restricting to f0 at 0 ∈ T . Let C ′T denote the irreducible component of
CT containing B′ ⊂ C0; its distinguished fiber is a subcomb

C ′
0 := B′ ∪ Ti1 ∪ . . . ∪ Tiq ⊂ C0, q = r − c.

The restriction f ′ = f |C ′ is our desired morphism.
When the teeth are L-very free, the argument of [13, II.7.10] yields a

smoothing that is L-free over B. �

Corollary 18. Retain the assumptions of Proposition 17 and assume
k is of characteristic zero. Suppose in addition that B′ meets a proper
rationally connected fiber of ψ. Then there exists a free f ′s : B′ → Y with
ψ ◦ f ′s = ψ|B′.
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Proof. We just need to construct the comb C0 and the morphism f0.
Using Proposition 11, we choose

• points b1, . . . , br ∈ B with Ybi proper;
• distinct points b′1, . . . , b

′
r ∈ B′ with ψ(b′i) = bi; and

• L-very free curves Fi : Ti → Ybi containing b′i as a smooth point.

Let C0 = B′∪T1∪. . .∪Tr denote the corresponding comb and f0 : C0 ↪→ Y
the morphism obtained by gluing the inclusion B′ ⊂ Y with the Fi. �

Remark 19. Again, we could also work over the Hilbert scheme and
apply the smoothing techniques of [6, §2] to establish this result.

Our main application is to sections of rationally connected fibrations.

Theorem 20. Let B be a smooth projective curve, ψ : Y → B a proper
morphism from a smooth variety with rationally connected generic fiber,
Y ⊂ Y the open subset where ψ is smooth, and L an invertible sheaf on
Y restricting to a nontrivial effective divisor on the generic fiber of ψ.
Fix an integer N � 0.

For each invertible sheaf M ∈ PicN(B), there exists a section s : B →
Y such that s∗L = M and s is L-free over B. In particular, the sheaves

s∗EY,L/B and s∗TY/B = Ns(B)/Y

are both globally generated with no higher cohomology.

Proof of 20. The Graber-Harris-Starr Theorem [6] gives a section s1 :
B → Y . The exact sequence

0 → TY/B → TY → ψ∗TB → 0

induces
0 → s∗1TY/B → s∗1TY → TB → 0

which is split by the differential ds1 : TB → s∗1TY . Thus we have

s∗1TY = s∗1TY/B ⊕ TB
and the first term coincides with the normal bundle Ns1(B)/Y .

Proposition 17 gives a section s2 : B → Y that is L-free over B. We
assume this in what follows, so in particular

H1(B, s∗2EY,L/B) = 0.

To complete the proof, we produce smoothings ft : B → Y of suitable
combs

f0 : C0 = B ∪b1 T1 . . . ∪br Tr → Y
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where f0|B = s2 Fi = f0|Ti : Ti → Ybi is L-very free. These are given
by Proposition 15, but it is necessary to specify the points of attachment
carefully to achieve the desired value of f ∗t L.

Choose e sufficiently large so that for each smooth fiber Yb and every
point y ∈ Yb, there exists an L-very free curve T → Yb passing through
y with L · T = e. We therefore may assume

e = T1 · L = T2 · L = . . . = Tr · L > 0.

Let C → Ar and M denote the families constructed in the proof of
Proposition 17. Thus for generic s ∈ Ar we have Cs ' B and

M|Cs ' s∗2L(eb1 + . . .+ ebr).

Let U ⊂ B denote the locus over which Yb is smooth and contains a
L-very free curve T of degree e. To complete the proof of Theorem 20,
we require the following moving lemma, which governs the precise value
of N :

Lemma 21. Let B be a smooth projective curve, U ⊂ B a dense open
subset, and e ∈ N. Fix a line bundle Λ on B of degree `, r ≥ 2g(B) + 1,
and N = er + `. For any M ∈ PicN(B) there exist distinct points
b1, . . . , br ∈ U so that

M ' Λ(e(b1 + . . .+ br)).

This is an elementary application of Riemann-Roch. Choose an eth
root of M ⊗ Λ−1, i.e., a line bundle A with A⊗e ⊗ Λ = M . Any line
bundle of degree r on B is very ample so consider the embedding

φA : B ↪→ Pr−g(B).

The divisors with any support along B \ U form a finite union of hy-
perplanes in the linear system |A|. The divisors admitting points of
multiplicity > 1 form a proper subvariety of ∆ ⊂ |A| by the Bertini The-
orem. Any divisor in the complement of the hyperplanes and ∆ can be
expressed in the form b1 + . . .+ br with the bi distinct in U .

�

5. Proof of the smooth case

In this section, we prove Theorem 9; take S = {p} for some p ∈ B.
Apply Theorem 20 to Y = D, L = OD(D) = ND/X , and M = OB(Np)

for some suitable N � 0. We obtain a section s : B → D with the
following properties:
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• s∗D = ND/X |s(B) ' OB(Np);
• ED,O(D)/B|s(B) is globally generated with no higher cohomology.

Consider the following diagram:

0 0
↓ ↓

0 → OB → ED,O(D)/B|s(B) → Ns(B)/D → 0
|| ↓ ↓

0 → OB → EX ,O(D)/B|s(B) → Ns(B)/X → 0
↓ ↓

ND/X |s(B) = ND/X |s(B)
↓ ↓
0 0

The top two horizontal exact sequences are the Atiyah extensions defin-
ing ED,O(D)/B and EX ,O(D)/B restricted to s(B). We identify the relative
tangent bundles of D and X over B restricted to s(B) with the normal
bundles Ns(B)/D and Ns(B)/X . The right vertical exact sequence is the
standard normal bundle sequence for s(B) ⊂ D ⊂ X .

The terms in the bottom row are isomorphic to OB(Np), which has
no higher cohomology. Since the middle term in the upper row has
vanishing higher cohomology, we deduce that H1(EX ,O(D)/B|s(B)) = 0.
Furthermore, the middle vertical exact sequence yields an exact sequence
on global sections.

The inclusion D ⊂ X induces an inclusion of morphism spaces

(5.1) MorB((B,M), (D,OD(D))) ↪→ MorB((B,M), (X ,OX(D))).

These are smooth by Proposition 12. The image is precisely the indeter-
minacy of the rational map

G : MorB((B,M), (X ,OX (D))) 99K P(Γ(B,OB(Np)))
st 7→ s−1

t D.

We may interpret S-integral points as sections st mapping to elements of
Γ(B,OB(D)) vanishing at p to maximal order N . Thus we are interested
in elements of G−1[Γ(B,OB)], where Γ(B,OB) ⊂ Γ(B,OB(Np)) corre-
sponds to the constant functions, i.e., the image of the map on global
sections induced by the inclusion of sheaves OB ↪→ OB(Np).

The indeterminacy of G is resolved by blowing up the subscheme (5.1).
The stalk of its normal bundle at s(B) is canonically isomorphic to
Γ(OX (D)|s(B)). In particular, the proper transform of G−1[Γ(B,OB)]
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meets the exceptional fiber over s(B) at the point

[Γ(B,OB)] ∈ P(Γ(OX (D)|s(B))) ' P(Γ(B,OB(Np))).

Thus s(B) deforms to st(B) ∈ G−1[Γ(B,OB)], corresponding to an S-
integral point.

The sections thus produced are Zariski dense in X . Indeed, our con-
struction produces sections passing through the generic point of D that
deform out of D to the generic point of X .

Remark 22. Here is an alternate approach suggested by one of the
referees. Fix a section r ∈ Γ(X ,OX (D)) inducing the canonical inclusion
OX ↪→ OX (D). Since M = OB(Np), we have a morphism

G̃ : MorB((B,M), (X ,OX (D))) → Γ(B,OB(Np))

(st, ι : s∗tOX (D)
∼→M) 7→ ι(s∗t r)

which yields G on composition by

Γ(B,OB(Np)) 99K P(Γ(B,OB(Np))).

One can show that G̃ is smooth via deformation theory. The preimage
of the curve Γ(B,OB) ⊂ Γ(B,OB(Np)) gives the desired sections of X .
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