\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{HVAV11} \bibitem[ABB11]{ABB} A.~Auel, B.~Bernardara, and M.~Bolognesi, \emph{Fibrations in complete intersections of quadrics, {C}lifford algebras, derived categories, and rationality problems}, 2011, arXiv:1109.6938. \bibitem[Aue11]{Auel} A.~Auel, \emph{Clifford invariants of line bundle-valued quadratic forms}, 2011, Max Planck Institute for Mathematics preprint. \bibitem[BD84]{BhosleMA} U.~N. Bhosle-Desale, \emph{Degenerate symplectic and orthogonal bundles on {${\bf P}^{1}$}}, Math. Ann. \textbf{267} (1984), no.~3, 347--364. \MR{738257 (85j:14025)} \bibitem[Bho84]{Bhosle84} U.~N. Bhosle, \emph{Moduli of orthogonal and spin bundles over hyperelliptic curves}, Compositio Math. \textbf{51} (1984), no.~1, 15--40. \MR{734782 (85j:14024)} \bibitem[Bho98]{Bhosle98} \bysame, \emph{Vector bundles of rank {$2$}, degree {$0$} on a nodal hyperelliptic curve}, Algebraic geometry ({C}atania, 1993/{B}arcelona, 1994), Lecture Notes in Pure and Appl. Math., vol. 200, Dekker, New York, 1998, pp.~271--281. \MR{1651100 (99k:14054)} \bibitem[Bho02]{Bhosle2002} \bysame, \emph{The compactified {J}acobian of a reducible hyperelliptic curve}, J. London Math. Soc. (2) \textbf{65} (2002), no.~1, 55--67. \MR{1875135 (2002j:14036)} \bibitem[Bho10]{Bhosle2010} \bysame, \emph{On the moduli of orthogonal bundles on a nodal hyperelliptic curve}, Vector bundles and complex geometry, Contemp. Math., vol. 522, Amer. Math. Soc., Providence, RI, 2010, pp.~43--52. \MR{2681731} \bibitem[BK94]{BK} W.~Bichsel and M.-A. Knus, \emph{Quadratic forms with values in line bundles}, Recent advances in real algebraic geometry and quadratic forms ({B}erkeley, {CA}, 1990/1991; {S}an {F}rancisco, {CA}, 1991), Contemp. Math., vol. 155, Amer. Math. Soc., Providence, RI, 1994, pp.~293--306. \MR{1260714 (95c:11053)} \bibitem[Bou03]{bourqui} D.~Bourqui, \emph{Fonction z\^eta des hauteurs des vari\'et\'es toriques d\'eploy\'ees dans le cas fonctionnel}, J. Reine Angew. Math. \textbf{562} (2003), 171--199. \MR{2011335 (2004g:11051)} \bibitem[Cap94]{Caporaso} L.~Caporaso, \emph{A compactification of the universal {P}icard variety over the moduli space of stable curves}, J. Amer. Math. Soc. \textbf{7} (1994), no.~3, 589--660. \MR{1254134 (95d:14014)} \bibitem[Cas04]{castravet} A.-M. Castravet, \emph{Rational families of vector bundles on curves}, Internat. J. Math. \textbf{15} (2004), no.~1, 13--45. \MR{2039210 (2005i:14038)} \bibitem[CTK11]{ct-kahn} J.-L. Colliot-Th{\'e}l{\`e}ne and B.~Kahn, \emph{Cycles de codimension 2 et ${H}^3$ non ramifi\'e pour les vari\'et\'es sur les corps finis}, 2011, arXiv:1104.3350. \bibitem[CTSD10]{CTSD} J.-L. Colliot-Th{\'e}l{\`e}ne and P.~Swinnerton-Dyer, \emph{Zero-cycles and rational points on some surfaces over a global function field}, 2010, arXiv:1004.2797. \bibitem[DR77]{DesRam} U.~V. Desale and S.~Ramanan, \emph{Classification of vector bundles of rank {$2$} on hyperelliptic curves}, Invent. Math. \textbf{38} (1976/77), no.~2, 161--185. \MR{0429897 (55 \#2906)} \bibitem[GGK10]{GGK} M.~Green, Ph. Griffiths, and M.~Kerr, \emph{N\'eron models and limits of {A}bel-{J}acobi mappings}, Compos. Math. \textbf{146} (2010), no.~2, 288--366. \MR{2601630 (2011c:14016)} \bibitem[Har68]{Harder} G.~Harder, \emph{Eine {B}emerkung zum schwachen {A}pproximationssatz}, Arch. Math. (Basel) \textbf{19} (1968), 465--471. \MR{0241427 (39 \#2767)} \bibitem[Har77]{Hart} R.~Hartshorne, \emph{Algebraic geometry}, Springer-Verlag, New York, 1977, Graduate Texts in Mathematics, No. 52. \MR{0463157 (57 \#3116)} \bibitem[HM82]{HM} J.~Harris and D.~Mumford, \emph{On the {K}odaira dimension of the moduli space of curves}, Invent. Math. \textbf{67} (1982), no.~1, 23--88, With an appendix by William Fulton. \MR{664324 (83i:14018)} \bibitem[HRS02]{HRS2} J.~Harris, M.~Roth, and J.~Starr, \emph{Abel-{J}acobi maps associated to smooth cubic threefolds}, 2002, arXiv:0202080v1. \bibitem[HRS05]{HRS} \bysame, \emph{Curves of small degree on cubic threefolds}, Rocky Mountain J. Math. \textbf{35} (2005), no.~3, 761--817. \MR{2150309 (2007a:14011)} \bibitem[HT84]{HT} J.~Harris and L.~W. Tu, \emph{On symmetric and skew-symmetric determinantal varieties}, Topology \textbf{23} (1984), no.~1, 71--84. \MR{721453 (85c:14032)} \bibitem[HVAV11]{HVAV} B.~Hassett, A.~V\'arilly-Alvarado, and P.~Varilly, \emph{Transcendental obstructions to weak approximation on general {K}3 surfaces}, Adv. Math. \textbf{228} (2011), no.~3, 1377--1404. \bibitem[KNU10]{KNU} K.~Kato, Ch. Nakayama, and S.~Usui, \emph{Log intermediate {J}acobians}, Proc. Japan Acad. Ser. A Math. Sci. \textbf{86} (2010), no.~4, 73--78. \MR{2657330 (2011f:14013)} \bibitem[KPS86]{KPS} M.-A. Knus, R.~Parimala, and R.~Sridharan, \emph{On rank {$4$} quadratic spaces with given {A}rf and {W}itt invariants}, Math. Ann. \textbf{274} (1986), no.~2, 181--198. \MR{838464 (88a:11039)} \bibitem[LPS97]{LPS} A.~Lanteri, M.~Palleschi, and A.~J. Sommese, \emph{Del {P}ezzo surfaces as hyperplane sections}, J. Math. Soc. Japan \textbf{49} (1997), no.~3, 501--529. \MR{1452700 (98d:14053)} \bibitem[LY02]{lai} K.~F. Lai and K.~M. Yeung, \emph{Rational points in flag varieties over function fields}, J. Number Theory \textbf{95} (2002), no.~2, 142--149. \MR{1924094 (2003i:11089)} \bibitem[Mar82]{Maruyama} M.~Maruyama, \emph{Elementary transformations in the theory of algebraic vector bundles}, Algebraic geometry ({L}a {R}\'abida, 1981), Lecture Notes in Math., vol. 961, Springer, Berlin, 1982, pp.~241--266. \MR{708337 (85b:14020)} \bibitem[Nag70]{Nagata} M.~Nagata, \emph{On self-intersection number of a section on a ruled surface}, Nagoya Math. J. \textbf{37} (1970), 191--196. \MR{0258829 (41 \#3475)} \bibitem[Nak77]{Nakamura} I.~Nakamura, \emph{Relative compactification of the {N}\'eron model and its application}, Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo, 1977, pp.~207--225. \MR{0457435 (56 \#15640)} \bibitem[NR78]{NS} M.~S. Narasimhan and S.~Ramanan, \emph{Geometry of {H}ecke cycles. {I}}, C. {P}. {R}amanujam---a tribute, Tata Inst. Fund. Res. Studies in Math., vol.~8, Springer, Berlin, 1978, pp.~291--345. \MR{541029 (81b:14003)} \bibitem[Pan96]{Pandharipande} R.~Pandharipande, \emph{A compactification over {$\overline {M}_g$} of the universal moduli space of slope-semistable vector bundles}, J. Amer. Math. Soc. \textbf{9} (1996), no.~2, 425--471. \MR{1308406 (96f:14014)} \bibitem[Pey05]{peyre} E.~Peyre, \emph{Obstructions au principe de {H}asse et \`a l'approximation faible}, Ast\'erisque (2005), no.~299, Exp. No. 931, viii, 165--193, S{\'e}minaire Bourbaki. Vol. 2003/2004. \MR{2167206 (2007b:14041)} \bibitem[Ray82]{Raynaud} M.~Raynaud, \emph{Sections des fibr\'es vectoriels sur une courbe}, Bull. Soc. Math. France \textbf{110} (1982), no.~1, 103--125. \MR{662131 (84a:14009)} \bibitem[Sha78]{Shatz} S.~S. Shatz, \emph{On subbundles of vector bundles over {${\bf P}^{1}$}}, J. Pure Appl. Algebra \textbf{10} (1977/78), no.~3, 315--322. \MR{0469920 (57 \#9700)} \bibitem[Zhu11]{YiZhu} Y.~Zhu, \emph{Homogeneous fibrations over surfaces}, 2011, arXiv:1111.2963. \end{thebibliography}