\begin{thebibliography}{CTP16b} \bibitem[Ara75]{arason} J{\'o}n~Kr. Arason. \newblock Cohomologische invarianten quadratischer {F}ormen. \newblock {\em J. Algebra}, 36(3):448--491, 1975. \bibitem[BC94]{batyrev-cox} Victor~V. Batyrev and David~A. Cox. \newblock On the {H}odge structure of projective hypersurfaces in toric varieties. \newblock {\em Duke Math. J.}, 75(2):293--338, 1994. \bibitem[CDK95]{CDK} Eduardo Cattani, Pierre Deligne, and Aroldo Kaplan. \newblock On the locus of {H}odge classes. \newblock {\em J. Amer. Math. Soc.}, 8(2):483--506, 1995. \bibitem[CHM88]{CHM} Ciro Ciliberto, Joe Harris, and Rick Miranda. \newblock General components of the {N}oether-{L}efschetz locus and their density in the space of all surfaces. \newblock {\em Math. Ann.}, 282(4):667--680, 1988. \bibitem[CT95]{ct-pure} Jean-Louis Colliot-Th\'el\`ene. \newblock Birational invariants, purity and the {G}ersten conjecture. \newblock In {\em {$K$}-theory and algebraic geometry: connections with quadratic forms and division algebras ({S}anta {B}arbara, {CA}, 1992)}, volume~58 of {\em Proc. Sympos. Pure Math.}, pages 1--64. Amer. Math. Soc., Providence, RI, 1995. \bibitem[CTO89]{CTO} Jean-Louis Colliot-Th\'el\`ene and Manuel Ojanguren. \newblock Vari\'et\'es unirationnelles non rationnelles: au-del\`a de l'exemple d'{A}rtin et {M}umford. \newblock {\em Invent. Math.}, 97(1):141--158, 1989. \bibitem[CTP16a]{ct-pir-cyclic} Jean-Louis Colliot-Th\'el\`ene and Alena Pirutka. \newblock Cyclic covers that are not stably rational. \newblock {\em Izvestiya RAN, Ser. Math.}, 80(4):35--47, 2016. \bibitem[CTP16b]{ct-pirutka} Jean-Louis Colliot-Th\'el\`ene and Alena Pirutka. \newblock Hypersurfaces quartiques de dimension 3 : non rationalit\'e stable. \newblock {\em Ann. Sci. \'Ec. Norm. Sup\'er. (4)}, 49(2):371--397, 2016. \bibitem[CTV12]{CTV} Jean-Louis Colliot-Th{\'e}l{\`e}ne and Claire Voisin. \newblock Cohomologie non ramifi\'ee et conjecture de {H}odge enti\`ere. \newblock {\em Duke Math. J.}, 161(5):735--801, 2012. \bibitem[dFF13]{dFF} Tommaso de~Fernex and Davide Fusi. \newblock Rationality in families of threefolds. \newblock {\em Rend. Circ. Mat. Palermo (2)}, 62(1):127--135, 2013. \bibitem[GS]{M2} Daniel~R. Grayson and Michael~E. Stillman. \newblock Macaulay2, a software system for research in algebraic geometry. \newblock Available at \url{http://www.math.uiuc.edu/Macaulay2/}. \bibitem[Has99]{hassett-JAG} Brendan Hassett. \newblock Some rational cubic fourfolds. \newblock {\em J. Algebraic Geom.}, 8(1):103--114, 1999. \bibitem[HKT15]{HKT-conic} Brendan Hassett, Andrew Kresch, and Yuri Tschinkel. \newblock Stable rationality and conic bundles. \newblock {\em Math. Annalen}, to appear, 2015. \newblock {\tt arXiv:1503.08497}. \bibitem[Kah08]{Kahnbook} Bruno Kahn. \newblock {\em Formes quadratiques sur un corps}, volume~15 of {\em Cours Sp\'ecialis\'es [Specialized Courses]}. \newblock Soci\'et\'e Math\'ematique de France, Paris, 2008. \bibitem[Pir16]{pirutka-survol} Alena Pirutka. \newblock Varieties that are not stably rational, zero-cycles and unramified cohomology, 2016. \newblock {\tt arXiv:1603.09261}. \bibitem[Spr52]{Springer} Tonny~Albert Springer. \newblock Sur les formes quadratiques d'indice z\'ero. \newblock {\em C. R. Acad. Sci. Paris}, 234:1517--1519, 1952. \bibitem[Tot16a]{totaro-JAMS} Burt Totaro. \newblock Hypersurfaces that are not stably rational. \newblock {\em J. Amer. Math. Soc.}, 29(3):883--891, 2016. \bibitem[Tot16b]{totaro-15} Burt Totaro. \newblock Rationality does not specialize among terminal varieties. \newblock {\em Math. Proc. Cambridge Philos. Soc.}, 161(1):13--15, 2016. \bibitem[Voi07]{voisin-book} Claire Voisin. \newblock {\em Hodge theory and complex algebraic geometry. {II}}, volume~77 of {\em Cambridge Studies in Advanced Mathematics}. \newblock Cambridge University Press, Cambridge, english edition, 2007. \newblock Translated from the French by Leila Schneps. \bibitem[Voi15a]{voisin-stable} Claire Voisin. \newblock ({S}table) rationality is not deformation invariant, 2015. \newblock {\tt arXiv:1511.03591}. \bibitem[Voi15b]{Voisin} Claire Voisin. \newblock Unirational threefolds with no universal codimension {$2$} cycle. \newblock {\em Invent. Math.}, 201(1):207--237, 2015. \end{thebibliography}