\providecommand{\bysame}{\leavevmode\hbox to3em{\hrulefill}\thinspace} \providecommand{\MR}{\relax\ifhmode\unskip\space\fi MR } % \MRhref is called by the amsart/book/proc definition of \MR. \providecommand{\MRhref}[2]{% \href{http://www.ams.org/mathscinet-getitem?mr=#1}{#2} } \providecommand{\href}[2]{#2} \begin{thebibliography}{GHMS05} \bibitem[Bir62]{Birch} B.~J. Birch, \emph{Forms in many variables}, Proc. Roy. Soc. Ser. A \textbf{265} (1961/1962), 245--263. \MR{0150129 (27 \#132)} \bibitem[BW79]{BW} J.~W. Bruce and C.~T.~C. Wall, \emph{On the classification of cubic surfaces}, J. London Math. Soc. (2) \textbf{19} (1979), no.~2, 245--256. \MR{533323 (80f:14021)} \bibitem[Cor96]{Co} A.~Corti, \emph{Del {P}ezzo surfaces over {D}edekind schemes}, Ann. of Math. (2) \textbf{144} (1996), no.~3, 641--683. \MR{1426888 (98e:14037)} \bibitem[CTG04]{CTG} J.~L. Colliot-Th{\'e}l{\`e}ne and P.~Gille, \emph{Remarques sur l'approximation faible sur un corps de fonctions d'une variable}, Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002), Progr. Math., vol. 226, Birkh\"auser Boston, Boston, MA, 2004, pp.~121--134. \MR{2 029 865} \bibitem[dJS06]{dJS} A.J. de~Jong and J.~Starr, \emph{Low degree complete intersections are rationally simply connected}, 2006, preprint, 74 pages. \bibitem[GH78]{GH} P.~Griffiths and J.~Harris, \emph{Principles of algebraic geometry}, Wiley-Interscience [John Wiley \& Sons], New York, 1978, Pure and Applied Mathematics. \MR{507725 (80b:14001)} \bibitem[GHMS05]{GHMS} T.~Graber, J.~Harris, B.~Mazur, and J.~Starr, \emph{Rational connectivity and sections of families over curves}, Ann. Sci. \'Ecole Norm. Sup. (4) \textbf{38} (2005), no.~5, 671--692. \MR{2195256 (2006j:14044)} \bibitem[GHS03]{GHS} T.~Graber, J.~Harris, and J.~Starr, \emph{Families of rationally connected varieties}, J. Amer. Math. Soc. \textbf{16} (2003), no.~1, 57--67 (electronic). \MR{2003m:14081} \bibitem[HMP98]{HMP} J.~Harris, B.~Mazur, and R.~Pandharipande, \emph{Hypersurfaces of low degree}, Duke Math. J. \textbf{95} (1998), no.~1, 125--160. \MR{1646558 (99j:14043)} \bibitem[HT06]{HT06} B.~Hassett and Y.~Tschinkel, \emph{Weak approximation over function fields}, Invent. Math. \textbf{163} (2006), no.~1, 171--190. \bibitem[HT08]{HT05} \bysame, \emph{Approximation at places of bad reduction for rationally connected varieties}, Pure Appl. Math. Q. \textbf{4} (2008), no.~3, 743--766. \bibitem[Kol96]{kollar} J.~Koll{\'a}r, \emph{Rational curves on algebraic varieties}, Ergebnisse der Math., vol.~32, Springer-Verlag, Berlin, 1996. \MR{98c:14001} \bibitem[Nag63]{Na} M.~Nagata, \emph{A generalization of the imbedding problem of an abstract variety in a complete variety}, J. Math. Kyoto Univ. \textbf{3} (1963), 89--102. \MR{0158892 (28 \#2114)} \bibitem[PS92]{PS} K.~Paranjape and V.~Srinivas, \emph{Unirationality of the general complete intersection of small multidegree}, Flips and abundance for algebraic threefolds (J.~Koll\'ar, ed.), Ast\'erisque, no. 211, Soci\'et\'e Math\'ematique de France, Paris, 1992, pp.~241--248. \MR{1225842 (94f:14013)} \bibitem[Ski97]{Skinner} C.~M. Skinner, \emph{Forms over number fields and weak approximation}, Compositio Math. \textbf{106} (1997), no.~1, 11--29. \MR{1446148 (98b:14021)} \bibitem[Zha06]{zhang} Q.~Zhang, \emph{Rational connectedness of log {${\bf Q}$}-{F}ano varieties}, J. Reine Angew. Math. \textbf{590} (2006), 131--142. \MR{2208131 (2006m:14021)} \end{thebibliography}