
Solutions to Third Midterm Exam, Math 212 Spring 2012

1. What is the length of the path γ(t) = (2 cos t, 2 sin t, 2
3
t3/2) for 0 ≤ t ≤ 5?

Since γ′(t) = (−2 sin t, 2 cos t, t1/2)

‖γ′(t)‖ =
√

4 sin2 t+ 4 cos2 t+ t =
√

4 + t ,

and the length is ∫ 5

0

‖γ′(t)‖ dt =

∫ 5

0

√
4 + t dt =

∫ 4+5

4+0

√
u du

= (
2

3
)u3/2

∣∣9
4

= (
2

3
)(93/2 − 43/2) = (

2

3
)(27− 8) =

38

3
.

2. Suppose f, g and h are three smooth functions on R3 and that F = (f, g, h). Prove that
div(curlF) = 0 .

Since curlF = (hy − gz, fz − hx, gx − fy),

div(curlF) = (hyx − gzx) + (fzy + hxy) + (gxz + fyz)

= (hyx − hxy) + (fzy − fyz) + (gxz − gzx) = 0 + 0 + 0

because of the equality of mixed partial derivatives.

3. Let G be the vector field G(x, y, z) = (y + z, y, z + z2).

(a) Find the curl of G.

curlG =
(
(z + z2)y − yz, (y + z)z − (z + z2)x, yx − (y + z)y

)
= (0− 0, 1− 0, 0− 1) = (0, 1,−1) .

(b) Is G a gradient field (i.e., the gradient of some function)? Explain why/why not.
No, because curlG 6= 0 while, for any smooth function f , curl (gradf) = 0. In fact,

curl( fx, fy, fz) = (fzy − fyz, fxz − fzx, fyx − fxy) = (0, 0, 0) .

4. Let A be the region in the plane given by y ≥ 0 and 1 ≤ x2 + y2 ≤ 4. Evaluate the integral∫∫
A

(x2 + y2)dx dy.

Since x2 + y2 and the description of A both involve some rotational symmetry, it is best to
use polar coordinates. Here A is given by 1 ≤ r ≤ 2 and 0 ≤ θ ≤ π. Also x2 + y2 = r2, and
dx dy = r dr dθ. So∫∫

A

(x2 + y2)dx dy =

∫ π

0

∫ 2

1

r2 r dr dθ

=

∫ π

0

(
r4

4
)
∣∣2
1
dθ = 2π(4− 1

4
) =

15π

2
.



5. Find the volume of the region W obtained as the intersection of the sets

x2 + y2 + z2 ≤ 1 and x2 + y2 ≤ z2.

Here spherical coordinates are good because 0 ≤ ρ =
√
x2 + y2 + z2 ≤ 1 and the other

inequality x2 + y2 ≤ z2 becomes r2 ≤ z2 so that, since

−1 ≤ tanφ =
r

z
≤ 1 hence, 0 ≤ φ ≤ π

4
or

3π

4
≤ φ ≤ π .

The top and bottom volumes are the same. Thus, since dx dy dz = ρ2 sinφ dρ dθ dφ,

VolumeW =

∫∫∫
W

dx dy dz = 2

∫ π/4

0

∫ 2π

0

∫ 1

0

ρ2 sinφ dρ dθ dφ

= 2

∫ π/4

0

∫ 2π

0

(
ρ3

3
)
∣∣1
0

sinφ dθ dφ = 2

∫ π/4

0

2π(
1

3
) sinφ dφ

=
4π

3
(− cosφ)

∣∣π/4
0

=
4π

3
(−
√

2

2
+ 1) =

2π

3
(2−

√
2) .

6. Let T : R2 → R2 be the map T (u, v) = (u, uv).

(a) Let D ⊂ R2 be the region given by 1 ≤ x ≤ 2 and |y| ≤ x. Find a region D∗ ⊂ R2 such
that D = T (D∗) and T is one-to-one on D∗.

Sketching D we find that it is the quadrilateral with vertices (1, 1), (2, 2), (2,−2), (1,−1) .
Since T doesn’t change the first coordinate, T preserves each vertical line {(x0, y) : y ∈ R}
for 1 ≤ x0 ≤ 2. Also it expands the Y coordinate of points on this line by a factor x0. Since
T (D∗) = D, we may find D∗ by noting that

(x0, y) ∈ D∗ ⇐⇒ (x0, x0y) ∈ T (D∗) = D ⇐⇒ |x0y| ≤ x0 ⇐⇒ |y| ≤ 1 .

Thus D∗ is the rectangle defined by 1 ≤ x ≤ 2 and −1 ≤ y ≤ 1, that is, D∗ = [1, 2]× [−1, 1].
To check that T is one-to-one, assume (x, y), (x̃, ỹ) ∈ D∗ and

(x, xy) = T (x, y) = T (x̃, ỹ) = (x̃, x̃ỹ) .

Then x = x̃ and y = x−1(xy) = (x̃)−1(x̃ỹ) = ỹ. So (x, y) = (x̃, ỹ), and T is one-to-one.

(b) Using the change of variables formula, rewrite the integral
∫∫

D
cos
(
πy
2x

)
dxdy as an inte-

gral over the region D∗. Then find the value of the integral.
To follow pur previous notations for the change-of-variable theorem, we use (u, v) for points

in D∗, we have T (u, v) = (x(u, v), y(u, v)) with the real-valued functions x(u, v) = u and
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y(u, v) = uv. Then Tu = (1, v), Tv = (0, u) and the integration factor is found by taking the
determinant so that

∂(x, y)

∂(u, v)
= ‖Tu × Tv‖ = |1 · u − 0 · v| = u ,

that is, dx dy = u du dv.

(b) Using the change of variables formula, rewrite the integral
∫∫

D
cos(πx

2y
)dxdy as an integral

over the region D∗. Then find the value of the integral.

∫∫
D

cos(
πx

2y
)dx dy =

∫∫
D∗

cos(
πuv

2u
)u du dv

=

∫ 1

−1

∫ 2

1

cos(
π

2
v) · u du dv =

∫ 1

−1
cos(

π

2
v) · (u

2

2
)
∣∣2
1
dv

=
3

2
(
2

π
) sin(

π

2
v)
∣∣1
−1 =

6

π
.

7. Let C be the curve obtained as the intersection of the surfaces x2 + y2 = 1 and x+ y+ z = 1.

(a) Find a parametrization for C.

x2 + y2 = 1 suggests using x(t) = cos t, y(t) = sin t for 0 ≤ t ≤ 2π. Since z = 1− x− y, take
z(t) = 1− cos t− sin t, that is

~c(t) = (cos t, sin t, 1− cos t− sin t) for 0 ≤ t ≤ 2π .

(b) Find the value of the path integral
∫
C

√
1− xy ds.

Here ~c′(t) = (− sin t, cos t, sin t− cos t) and

‖~c′(t)‖ =
√

sin2 t+ cos2 t+ sin2 t− 2 sin t cos t+ cos2 t

=
√

2− 2 sin t cos t =
√

2
√

1− sin t cos t .

∫
C

√
1− xy ds =

∫ 2π

0

√
1− x(t)y(t)‖~c′(t)‖ dt

=
√

2

∫ 2π

0

√
1− cos t sin t

√
1− sin t cos t dt

=
√

2

∫ 2π

0

(1− sin t cos t) dt = 2
√

2π −
√

2

∫ 2π

0

d(
sin2 t

2
) = 2

√
2π .
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