1. What is the length of the path $\gamma(t)=\left(2 \cos t, 2 \sin t, \frac{2}{3} t^{3 / 2}\right)$ for $0 \leq t \leq 5$?

$$
\begin{aligned}
& \text { Since } \gamma^{\prime}(t)=\left(-2 \sin t, 2 \cos t, t^{1 / 2}\right) \\
& \qquad\left\|\gamma^{\prime}(t)\right\|=\sqrt{4 \sin ^{2} t+4 \cos ^{2} t+t}=\sqrt{4+t}
\end{aligned}
$$

and the length is

$$
\begin{gathered}
\int_{0}^{5}\left\|\gamma^{\prime}(t)\right\| d t=\int_{0}^{5} \sqrt{4+t} d t=\int_{4+0}^{4+5} \sqrt{u} d u \\
=\left.\left(\frac{2}{3}\right) u^{3 / 2}\right|_{4} ^{9}=\left(\frac{2}{3}\right)\left(9^{3 / 2}-4^{3 / 2}\right)=\left(\frac{2}{3}\right)(27-8)=\frac{38}{3} .
\end{gathered}
$$

2. Suppose f, g and h are three smooth functions on \mathbf{R}^{3} and that $\mathbf{F}=(f, g, h)$. Prove that $\operatorname{div}(\operatorname{curl} \mathbf{F})=0$.

$$
\begin{aligned}
& \text { Since curl } \mathbf{F}=\left(h_{y}-g_{z}, f_{z}-h_{x}, g_{x}-f_{y}\right) \\
& \qquad \begin{aligned}
\operatorname{div}(\operatorname{curl} \mathbf{F}) & =\left(h_{y x}-g_{z x}\right)+\left(f_{z y}+h_{x y}\right)+\left(g_{x z}+f_{y z}\right) \\
& =\left(h_{y x}-h_{x y}\right)+\left(f_{z y}-f_{y z}\right)+\left(g_{x z}-g_{z x}\right)=0+0+0
\end{aligned}
\end{aligned}
$$

because of the equality of mixed partial derivatives.
3. Let \mathbf{G} be the vector field $\mathbf{G}(x, y, z)=\left(y+z, y, z+z^{2}\right)$.
(a) Find the curl of \mathbf{G}.

$$
\begin{aligned}
\operatorname{curl} \mathbf{G} & =\left(\left(z+z^{2}\right)_{y}-y_{z},(y+z)_{z}-\left(z+z^{2}\right)_{x}, y_{x}-(y+z)_{y}\right) \\
& =(0-0,1-0,0-1)=(0,1,-1)
\end{aligned}
$$

(b) Is G a gradient field (i.e., the gradient of some function)? Explain why/why not.

No, because curl $\mathbf{G} \neq 0$ while, for any smooth function $f, \operatorname{curl}(\operatorname{grad} f)=\mathbf{0}$. In fact,

$$
\operatorname{curl}\left(f_{x}, f_{y}, f_{z}\right)=\left(f_{z y}-f_{y z}, f_{x z}-f_{z x}, f_{y x}-f_{x y}\right)=(0,0,0)
$$

4. Let A be the region in the plane given by $y \geq 0$ and $1 \leq x^{2}+y^{2} \leq 4$. Evaluate the integral $\iint_{A}\left(x^{2}+y^{2}\right) d x d y$.

Since $x^{2}+y^{2}$ and the description of A both involve some rotational symmetry, it is best to use polar coordinates. Here A is given by $1 \leq r \leq 2$ and $0 \leq \theta \leq \pi$. Also $x^{2}+y^{2}=r^{2}$, and $d x d y=r d r d \theta$. So

$$
\begin{aligned}
\iint_{A}\left(x^{2}+y^{2}\right) d x d y & =\int_{0}^{\pi} \int_{1}^{2} r^{2} r d r d \theta \\
& =\left.\int_{0}^{\pi}\left(\frac{r^{4}}{4}\right)\right|_{1} ^{2} d \theta=2 \pi\left(4-\frac{1}{4}\right)=\frac{15 \pi}{2}
\end{aligned}
$$

5. Find the volume of the region W obtained as the intersection of the sets

$$
x^{2}+y^{2}+z^{2} \leq 1 \text { and } x^{2}+y^{2} \leq z^{2} .
$$

Here spherical coordinates are good because $0 \leq \rho=\sqrt{x^{2}+y^{2}+z^{2}} \leq 1$ and the other inequality $x^{2}+y^{2} \leq z^{2}$ becomes $r^{2} \leq z^{2}$ so that, since

$$
-1 \leq \tan \phi=\frac{r}{z} \leq 1 \text { hence, } 0 \leq \phi \leq \frac{\pi}{4} \text { or } \frac{3 \pi}{4} \leq \phi \leq \pi
$$

The top and bottom volumes are the same. Thus, since $d x d y d z=\rho^{2} \sin \phi d \rho d \theta d \phi$,

$$
\begin{aligned}
& \text { Volume } W=\iiint_{W} d x d y d z=2 \int_{0}^{\pi / 4} \int_{0}^{2 \pi} \int_{0}^{1} \rho^{2} \sin \phi d \rho d \theta d \phi \\
& =\left.2 \int_{0}^{\pi / 4} \int_{0}^{2 \pi}\left(\frac{\rho^{3}}{3}\right)\right|_{0} ^{1} \sin \phi d \theta d \phi=2 \int_{0}^{\pi / 4} 2 \pi\left(\frac{1}{3}\right) \sin \phi d \phi \\
& =\left.\frac{4 \pi}{3}(-\cos \phi)\right|_{0} ^{\pi / 4}=\frac{4 \pi}{3}\left(-\frac{\sqrt{2}}{2}+1\right)=\frac{2 \pi}{3}(2-\sqrt{2}) \text {. }
\end{aligned}
$$

6. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the map $T(u, v)=(u, u v)$.
(a) Let $D \subset \mathbb{R}^{2}$ be the region given by $1 \leq x \leq 2$ and $|y| \leq x$. Find a region $D^{*} \subset \mathbb{R}^{2}$ such that $D=T\left(D^{*}\right)$ and T is one-to-one on D^{*}.

Sketching D we find that it is the quadrilateral with vertices $(1,1),(2,2),(2,-2),(1,-1)$. Since T doesn't change the first coordinate, T preserves each vertical line $\left\{\left(x_{0}, y\right): y \in \mathbb{R}\right\}$ for $1 \leq x_{0} \leq 2$. Also it expands the Y coordinate of points on this line by a factor x_{0}. Since $T\left(D^{*}\right)=D$, we may find D^{*} by noting that

$$
\left(x_{0}, y\right) \in D^{*} \Longleftrightarrow\left(x_{0}, x_{0} y\right) \in T\left(D^{*}\right)=D \Longleftrightarrow\left|x_{0} y\right| \leq x_{0} \Longleftrightarrow|y| \leq 1
$$

Thus D^{*} is the rectangle defined by $1 \leq x \leq 2$ and $-1 \leq y \leq 1$, that is, $D^{*}=[1,2] \times[-1,1]$.
To check that T is one-to-one, assume $(x, y),(\tilde{x}, \tilde{y}) \in D^{*}$ and

$$
(x, x y)=T(x, y)=T(\tilde{x}, \tilde{y})=(\tilde{x}, \tilde{x} \tilde{y})
$$

Then $x=\tilde{x}$ and $y=x^{-1}(x y)=(\tilde{x})^{-1}(\tilde{x} \tilde{y})=\tilde{y}$. So $(x, y)=(\tilde{x}, \tilde{y})$, and T is one-to-one.
(b) Using the change of variables formula, rewrite the integral $\iint_{D} \cos \left(\frac{\pi y}{2 x}\right) d x d y$ as an integral over the region D^{*}. Then find the value of the integral.

To follow pur previous notations for the change-of-variable theorem, we use (u, v) for points in D^{*}, we have $T(u, v)=(x(u, v), y(u, v))$ with the real-valued functions $x(u, v)=u$ and
$y(u, v)=u v$. Then $T_{u}=(1, v), T_{v}=(0, u)$ and the integration factor is found by taking the determinant so that

$$
\frac{\partial(x, y)}{\partial(u, v)}=\left\|T_{u} \times T_{v}\right\|=|1 \cdot u-0 \cdot v|=u
$$

that is, $d x d y=u d u d v$.
(b) Using the change of variables formula, rewrite the integral $\iint_{D} \cos \left(\frac{\pi x}{2 y}\right) d x d y$ as an integral over the region D^{*}. Then find the value of the integral.

$$
\begin{aligned}
\iint_{D} \cos \left(\frac{\pi x}{2 y}\right) d x d y & =\iint_{D^{*}} \cos \left(\frac{\pi u v}{2 u}\right) u d u d v \\
& =\int_{-1}^{1} \int_{1}^{2} \cos \left(\frac{\pi}{2} v\right) \cdot u d u d v=\left.\int_{-1}^{1} \cos \left(\frac{\pi}{2} v\right) \cdot\left(\frac{u^{2}}{2}\right)\right|_{1} ^{2} d v \\
& =\left.\frac{3}{2}\left(\frac{2}{\pi}\right) \sin \left(\frac{\pi}{2} v\right)\right|_{-1} ^{1}=\frac{6}{\pi}
\end{aligned}
$$

7. Let C be the curve obtained as the intersection of the surfaces $x^{2}+y^{2}=1$ and $x+y+z=1$.
(a) Find a parametrization for C.
$x^{2}+y^{2}=1$ suggests using $x(t)=\cos t, y(t)=\sin t$ for $0 \leq t \leq 2 \pi$. Since $z=1-x-y$, take $z(t)=1-\cos t-\sin t$, that is

$$
\vec{c}(t)=(\cos t, \sin t, 1-\cos t-\sin t) \text { for } 0 \leq t \leq 2 \pi
$$

(b) Find the value of the path integral $\int_{C} \sqrt{1-x y} d s$.

Here $\vec{c}(t)=(-\sin t, \cos t, \sin t-\cos t)$ and

$$
\begin{aligned}
\left\|\vec{c}^{\prime}(t)\right\| & =\sqrt{\sin ^{2} t+\cos ^{2} t+\sin ^{2} t-2 \sin t \cos t+\cos ^{2} t} \\
& =\sqrt{2-2 \sin t \cos t}=\sqrt{2} \sqrt{1-\sin t \cos t}
\end{aligned}
$$

$$
\begin{aligned}
\int_{C} \sqrt{1-x y} d s & =\int_{0}^{2 \pi} \sqrt{1-x(t) y(t)}\left\|\vec{c}^{\prime}(t)\right\| d t \\
& =\sqrt{2} \int_{0}^{2 \pi} \sqrt{1-\cos t \sin t} \sqrt{1-\sin t \cos t} d t \\
& =\sqrt{2} \int_{0}^{2 \pi}(1-\sin t \cos t) d t=2 \sqrt{2} \pi-\sqrt{2} \int_{0}^{2 \pi} d\left(\frac{\sin ^{2} t}{2}\right)=2 \sqrt{2} \pi
\end{aligned}
$$

