Solutions, Exam 1

Exercise 1. (a) Since $\|\mathbf{u}\|=\sqrt{1+4+4}=3$ and $\|\mathbf{v}\|=\sqrt{1+0+1}=\sqrt{2}$, the normalized vectors are

$$
\frac{\mathbf{u}}{\|\mathbf{u}\|}=\left(\frac{1}{3}, \frac{2}{3}, \frac{2}{3}\right) \text { and } \frac{\mathbf{v}}{\|\mathbf{v}\|}=\left(\frac{1}{\sqrt{2}}, 0, \frac{1}{\sqrt{2}}\right)
$$

(b) Since

$$
\cos \theta=\frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\|\|\mathbf{v}\|}=\frac{1+2}{3 \sqrt{2}}=\frac{1}{\sqrt{2}}, \quad \theta=\frac{\pi}{4}
$$

(c) A vector orthogonal to both \mathbf{u} and \mathbf{v} is $\mathbf{u} \times \mathbf{v}=(2,1,-2)$. Since the length of this vector is $\sqrt{4+1+4}=3$, a unit vector orthogonal to both \mathbf{u} and \mathbf{v} is the normalized vector $\left(\frac{2}{3}, \frac{1}{3},-\frac{2}{3}\right)$.
(d) We can use the vector from (c) to see that the general equation of a plane parallel to both \mathbf{u} and \mathbf{v} is $c=(2,1,-2) \cdot(x, y, z)=2 x+y-2 z$ Inserting $A=(0,0,1)$ gives $c=2(0)+1(1)-2(1)=-1$. So $2 x+y-2 z=-1$.
Exercise 2. (a) Here $\|\mathbf{a}\|=\sqrt{4+12}=4$ and $\|\mathbf{b}\|=\sqrt{3+1}=2$. Also

$$
\cos \theta=\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}=\frac{4 \sqrt{3}}{4 \cdot 2}=\frac{\sqrt{3}}{2} .
$$

So $\sin \theta=\frac{1}{2}$, and Area $=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta=4 \cdot 2 \cdot \frac{1}{2}=4$.
(b) The volume is the absolute value of scalar triple product

$$
|(\mathbf{a} \times \mathbf{b}) \cdot \mathbf{c}|=|(4,0,0) \cdot(4,2 \sqrt{3}, \sqrt{5})|=16
$$

(c) Let $\mathbf{x}=(x, y, z)$. Since $0=(x, y, z) \cdot(1,0,3)=x+3 z, x=-3 z$. Then we find

$$
(0,2,1)=2 \mathbf{j}+\mathbf{k}=(-3 z, y, z) \times(1,0,0)=(0, z,-y)
$$

Thus, $z=2, y=-1, x=-3(2)=-6$ and $\mathbf{x}=(-6,-1,2)$.
Exercise 3. Since $Q-P=(0-4,-2-4,2-0)=(-4,-6,2)$, a parameterization for the line is

$$
\mathbf{c}(t)=(4,4,0)+t(-4,-6,2)=(4-4 t, 4-6 t), 2 t) .
$$

(b) Using the normal direction $(-4,-6,2)$ from (a), we get $0=(-4,-6,2) \cdot(x, y, z)$ or $-2 x-3 y+z=0$.
(c) The desired plane is parallel to the plane of (b) and passes through the midpoint between P and Q, which is $\frac{1}{2}(P+Q)=(2,1,1)$. So the equation is $-2 x-3 y+z=c$ where $c=-2(2)-3(1)+1=-6$. So $-2 x-3 y+z=-6$ is the desired equation.
Exercise 4. See attachment.

Exercise 5. (a) This set is open. [A point (a, b) with $a>0$ and $b>0$ is the center of an open ball of radius $r=\min \{a, b\}$ which also lies in the set].

The boundary of the set is the union of the origin, the positive X -axis and the positive Y-axis. That is $\{(0, y): y \geq 0\} \cup\{(x, 0): x \geq 0\}$.
(b) This set is also open. [A point (a, b) with $a>0$ and $b>0$ is the center of an open ball of radius $r=|a|$ which also lies in the set].

It's boundary is the entire Y axis.
(c) This set is not open. It contains all its boundary points which forms the unit circle $x^{2}+y^{2}=1$. Any ball centered at one of these boundary points intersects both points in the set and points not in the set.
Exercise 6. (a) $\frac{\partial f}{\partial x}=\frac{1}{2}\left(x^{2} y+1\right)^{-1 / 2}(2 y x)=\frac{x y}{\sqrt{x^{2} y+1}}$.
(b) $\frac{\partial f}{\partial y}=\frac{1}{2}\left(x^{2} y+1\right)^{-1 / 2}\left(x^{2}\right)=\frac{x^{2}}{2 \sqrt{x^{2} y+1}}$.
(b) These partial derivatives exist for all (x, y) such that $x^{2} y+1+1>0$, that is, $x^{2} y>-1$.
(c) $\frac{\partial f}{\partial x}(2,2)=\frac{2 \cdot 2}{\sqrt{2^{2} 2+1}}=\frac{4}{3}, \quad \frac{\partial f}{\partial y}(2,2)=\frac{2^{2}}{2 \sqrt{2^{2} 2+1}}=\frac{2}{3}$.

Exercise 7. (a) Here we note that $t=x^{2}+y^{4} \quad \downarrow 0$ as $x, y \rightarrow 0$. Since $\lim _{t \rightarrow 0} \cos t=\cos 0=1$, we find

$$
\lim _{x, y \rightarrow 0} \frac{x^{2}+y^{4}}{\cos \left(x^{2}+y^{4}\right)}=\lim _{t \downarrow 0} \frac{t}{\cos t}=\frac{0}{1}=0
$$

(b) Similarly, using L'hôpital's rule, we find

$$
\lim _{x, y \rightarrow 0} \frac{x^{2}+y^{4}}{\sin \left(x^{2}+y^{4}\right)}=\lim _{t \downarrow 0} \frac{t}{\sin t}=\lim _{t \downarrow 0} \frac{1}{\cos t}=\frac{1}{1}=1 .
$$

(c) The difference between $x^{2}+y^{4}$ and $x^{4}+y^{2}$ makes us suspicious that the limit may not exist. To show the limit does not exist, it suffices to find two different ways of approaching $(0,0)$ that give different limiting behavior of f.

If we take $x=0$ and let $y \downarrow 0$, we find that

$$
\lim _{y \downarrow 0} \frac{y^{4}}{\sin \left(y^{2}\right)}=\lim _{y \downarrow 0} y^{2} \frac{y^{2}}{\sin y^{2}}=0 \cdot 1=0 .
$$

On the other hand, if we take $y=0$ and let $x \downarrow 0$, we find that

$$
\lim _{x \downarrow 0} \frac{x^{2}}{\sin \left(x^{4}\right)}=\lim _{x \downarrow 0} x^{-2} \frac{x^{4}}{\sin x^{4}}=(\infty) \cdot 1=\infty .
$$

So the limit in part (c) does not exist.

