THE VLASOV-POISSON EQUATION

BENOIT PAUSADER

ABSTRACT. We describe various facets of kinetic equations

1. INTRODUCTION

The Vlasov-Poisson system reads

$$\left(\partial_t + v \cdot \nabla_x\right)f + \lambda \nabla_x \phi \cdot \nabla_v f = 0, \qquad \Delta_x \phi(x, t) = \int f(x, v, t) dv \tag{1.1}$$

it represents the coupling between a kinetic density (*particle distribution*) f(x, v, t)and a field (*electrostatic/gravitational potential field*) $\phi(x, t)$, where $t \in \mathbb{R}$ is the time and $(x, v) \in TM$ is a vector field (most often, we will choose $M = \mathbb{R}^d$). There are two main versions of this equation depending on whether $\lambda > 0$ (attractive forces) or $\lambda < 0$ (repulsive forces). We refer to [2] for a book reference on kinetic equations.

1.1. Origin: ODEs.

1.1.1. Flow-map. One can consider a general ordinary differential equation:

$$\dot{y} = \mathbf{V}(y), \qquad \mathbf{V} : M \to \Gamma(TM),$$
(1.2)

and the corresponding flow $\Phi^t : M \to M$ such that $y(t) = \Phi^t(y(0))$, which is a diffeomorphism of M. This explains how single trajectories evolve, but one can ask how do aggregate quantities vary? One can answer this by composition:

$$\mathbf{1}_{\Phi^t(A)} = \mathbf{1}_A \circ \Phi^{-t}$$

On the other hand, if

$$\widetilde{g}(y,t) = g(\Phi^{-t}(y))$$

then we can verify that

$$(\partial_t + \mathbf{V} \cdot \nabla_y) \,\widetilde{g} = 0, \qquad \widetilde{g}(y, t = 0) = g(y).$$

1.1.2. The Kepler problem. An important ODE is the Kepler (inverse square) system for N point-particles: $M = T(\mathbb{R}^d)^N$ with coordinates $(x^1, x^2, \ldots, x^N, v_1, v_2, \ldots, v_N)$. The equation reads

$$\dot{x}^j = \mathbf{V}^j = v_j, \qquad \dot{v}_j = \mathbf{V}_j = \lambda \sum_{k \neq j} c_j c_k \frac{x^j - x^k}{|x^j - x^k|^d},$$

where

- (plasma case) $c_j = c_k$ and $\lambda > 0$ (this represents a gas of electrons),
- (gravitational case) $c_j > 0$ is the mass of each particle and $\lambda < 0$ is a gravitational constant.

BENOIT PAUSADER

Now, when N = 2, one has the famous 2-body problem, usually solved in Calculus. When $N \ge 3$, the system is chaotic and the system is hard to understand. The typical questions become

- (1) To understand some special solutions (e.g. Lagrange points for N = 3),
- (2) To understand special dynamics (KAM theory; Arnold diffusion),
- (3) To be able to do numerical integrations of the equations (e.g. one now knows that the Solar system is stable for the next thousands of years).

1.1.3. Statistical description. Interestingly, when $N = \infty$ and the particles have similar characteristics $(c_j = c_k)$, some aspects become easier to understand, at least as long as one adopts a statistical description (essentially work modulo permutation of the labels of each particles¹). In this case, one focuses on the *empyrical measure*

$$\mu(t) := \sum_{j} c_j \delta_{(x^j(t), v_j(t))}$$

This satisfies

$$\partial_t \mu + \operatorname{div}_{x,v} \left\{ \mu \mathbf{V} \right\} = 0.$$

Assuming that as $N \to \infty$, the particle are "smoothly distributed"

$$\mu_N \rightharpoonup f(x, v, t) dx dv \tag{1.3}$$

we obtain that f solves the VP equation (1.1).

1.2. **Typical questions.** The Vlasov-Poisson equation is the subject of intense current research; there are several directions of research that have proved quite fertile

- (1) Understand the stationary solutions and their stability properties [1, 4, 6].
- (2) Understand when one obtains a global in time solution and what are the possible blow-up scenarios [5, 8].
- (3) Understand the asymptotic behavior of solutions [3].

1.3. Modified scattering for solutions of the Vlasov-Poisson system in 3*d*. We can now describe a recent (2020) result [3].

Theorem 1.1 (Informally). If the initial distribution is sufficiently small, then the solution exists globally and disperses along a modified scattering.

To understand the asymptotic behavior, one needs to proceed in several steps.

1.3.1. The scattering mass. Without any force, all particle would follow straight lines (*free streaming*). The total mass on each free-streaming trajectory stabilizes to the *scattering mass*:

$$M(v) := \lim_{t \to \infty} \int_{\mathbb{R}^3} f(x, v, t) dx$$

¹This is *not* the same as using boson statistics.

1.3.2. This creates a long range electric/gravitational field. The field felt "on average" is then

$$\mathbf{E}(v,t) = \frac{1}{t^2} \frac{1}{4\pi} \int M(w) \frac{v-w}{|v-w|^3} dw + l.o.t. = -\frac{1}{t^2} \widetilde{\mathbf{E}}(v) + l.o.t.$$

and this leads to the ODE

$$\dot{x} = v, \qquad \dot{v} = -\frac{1}{t^2}\widetilde{\mathbf{E}}(v)$$

The force $t\mathbf{E}$ is long range (in time) because its total effects are not integrable $\int_{t}^{\infty} \frac{dt}{t} = \infty$, but fortunately, its nilpotent structure means that we can still understand it. We see that v should converge, and once v has stabilized, one can approximately integrate the equation:

$$x(t) = vt + \lambda \ln(t) \cdot \mathbf{\tilde{E}}(v) + x_0$$

1.3.3. *Convergence of the pointwise particle*. The particle density converges along this dynamics:

$$f(x - tv - \lambda \ln(t) \cdot \mathbf{E}(v), v, t) \rightharpoonup g_{\infty}(x, v), \quad \text{as } t \to \infty.$$

1.3.4. *Particle dynamics*. Thus for large times, the electric/gravitational field stabilizes to a "fixed" field; then each particle chooses a balistic motion trajectory and follows it with a logarithmic acceleration (electron) or deceleration (gravitational case).

1.4. **Related open questions.** There are a related interesting open questions; some out of reach, some that may be approachable

- (1) What happens for large initial data? In this setting, the attractive and repulsive cases lead to very different answers.
- (2) What happens in lower dimensions? Higher dimensions are easier to control. In dimension d = 2 the equation becomes much more nonlinear.
- (3) What happens for different σ -algebras? i.e. for measures which are density over a reference measure different from the Liouville measure (e.g. radial data? axisymmetric data?). This can be related to Landau damping [7].
- (4) What happens for different forces? Interesting cases should be to consider an external magnetic field, to replace Newtonian gravity by General relativity, to consider point charges as well...

References

- I. Bernstein, J. Greene and M. Kruskal, Exact nonlinear plasma oscillations. *Phys. Rev.* 108, 3, 546–550 (1957).
- [2] R. T. Glassey. The Cauchy problem in kinetic theory. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1996.
- [3] A. Ionescu, B. Pausader, X. Wang and K. Widmayer, On the asymptotic behavior of solutions to the Vlasov-Poisson system, preprint, arXiv:2005.03617.
- [4] M. Lemou, F. Méhats and P. Raphaël, The Orbital Stability of the Ground States and the Singularity Formation for the Gravitational Vlasov Poisson System, Archive for Rational Mechanics and Analysis, 2008, 189, 425–468
- [5] P.-L. Lions and B. Perthame. Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system. *Invent. Math.*, 105(2) 415–430 (1991).
- [6] C. MOUHOT, Stabilité orbitale pour le système de Vlasov-Poisson gravitationnel (d'après Lemou-Méhats-Raphaël, Guo, Lin, Rein et al.), no. 352, 2013, pp. Exp. No. 1044, vii, 35–82. Séminaire Bourbaki. Vol. 2011/2012. Exposés 1043–1058.

BENOIT PAUSADER

- [7] C. Mouhot and C. Villani, On Landau damping. Acta Math. 207(1), 29–201 (2011).
- [8] K. Pfaffelmoser, Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data. J. Differ. Equ. 95(2), 281–303 (1992)

MATHEMATICS DEPARTMENT, BOX 1917, BROWN UNIVERSITY, PROVIDENCE, RI 02912 *Email address*: Benoit.Pausader@math.brown.edu

4