
9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 1/10

Elliptic PDEs
In this notebook we give an example where we compute an encloser of the first eigenvalue of the so
called L-shaped domain. This procedure very much follows that in Dahne, J., & Salvy, B.,
Computation of tight enclosures for laplacian eigenvalues, SIAM Journal on Scientific Computing,
42(5), 3210–3232 (2020). http://dx.doi.org/10.1137/20m1326520

For this we will make use of Arblib.jl since IntervalArithmetic.jl doesn't support the Bessel
functions, which we will make use of. We will also make use of some of the tools I use for bounding
functions and finding zeros, they are in a package called ArbExtras.jl but it is not a registered
package so we install it from Github.

let
 import Pkg
 Pkg.activate(mktempdir())
 Pkg.add(["Arblib", "Plots", "PlutoUI", "SpecialFunctions"])
 Pkg.add(url = "https://github.com/Joel-Dahne/ArbExtras.jl", rev = "besselj")

 using ArbExtras, Arblib, LinearAlgebra, Plots, PlutoUI, SpecialFunctions

 setprecision(Arb, 64)

 nothing
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 2/10

Construct the approximate eigenfunction
Finding an approximate eigenfunction can be a hard task in itself. In this tutorial we skip this part
and use an already computed approximation of the eigenvalue and the eigenfunction, we will only
care about the rigorus verification of this approximation. The approximation was computed using
the Method of Particular Solutions.

vertices
[[0, 0], [1.000000000000000000, 0], [1.000000000000000000, 1.000000000000000000], [-1.00

 =

λ [9.639664913984496764 +/- 4.68e-19] =

coefficients
[[-0.2065520000000000134 +/- 3.12e-20], [4.971820000000000113e-6 +/- 3.09e-27], [-0.052

 =

u (generic function with 1 method)

vertices = Vector{Arb}[[0.0, 0.0], [1.0, 0.0], [1.0, 1.0], [-1.0, 1.0], [-1.0,
-1.0], [0.0, -1.0]]

⋅

λ = Arb(9.639664913984497)⋅

coefficients = Arb[-0.206552, 4.97182e-6, -0.0529564, 0.164401, 0.000266473,
0.422812, 0.159835, 0.0546326]

⋅

function u(xy, λ)
 # Convert from cartesian to polar coordinates
 r = norm(xy)
 if xy[1] > 0 || xy[2] > 0
 θ = atan(xy[2], xy[1])
 else
 θ = π + atan(-xy[2], -xy[1])
 end

 # Add together the functions in the approximation
 res = zero(r)
 for i in eachindex(coefficients)
 ν = oftype(res, 2(1 + (i - 1) * 2) // 3)
 res += coefficients[i] * besselj(ν, r * sqrt(λ)) * sin(ν * θ)
 end

 return res
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 3/10

u (generic function with 2 methods)

Estimate bounds

function u(xy::AbstractVector{ArbSeries}, λ)
 # Convert from cartesian to polar coordinates
 r = sqrt(xy[1]^2 + xy[2]^2)
 if xy[1][0] > 0 || xy[2][0] > 0
 θ = atan(xy[2], xy[1])
 else
 θ = π + atan(-xy[2], -xy[1])
 end

 # Add together the functions in the approximation
 res = zero(r)
 for i in eachindex(coefficients)
 ν = Arb(21 + (i - 1) * 2 // 3)
 res += coefficients[i] * besselj(ν, r * sqrt(λ)) * sin(ν * θ)
 end

 return res
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

function Base.atan(y::ArbSeries, x::ArbSeries)
 xdy = x * Arblib.derivative(y)
 ydx = y * Arblib.derivative(x)
 x2 = x^2
 y2 = y^2

 z = Arblib.integral((xdy - ydx)/(x^2 + y^2))
 z[0] = atan(y[0], x[0])

 return z
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 4/10

To get an enclosure of the eigenvalue we need to upper bound the defect of our approximation and
lower bound its norm. Lets start with a non-rigorous approach to see how it looks like.

We define a parameterization of the boundary of our domain and use this to plot the eigenfunction
on the boundary.

boundary_parameterization (generic function with 1 method)

Next we do a very simple approximation of the norm by just sampling random points in the interior
of the domain.

function boundary_parameterization(i::Integer)
 v = vertices[i]
 w = vertices[mod1(i + 1, length(vertices))]
 p(t) = v + t * (w - v)
 p(t::ArbSeries) = begin
 res = v + Ref(t) .* (w - v)
 res[1].arb_poly.length = t.arb_poly.length
 res[2].arb_poly.length = t.arb_poly.length
 return res
 end
 return p
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let pl = plot()
 ts = range(0, 1, length = 200)
 for i in 1:6
 p = boundary_parameterization(i)
 plot!(pl, (i - 1) .+ ts, u.(p.(ts), λ), label = "Boundary $i")
 end
 pl
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 5/10

[0.10816269035257844 +/- 7.75e-18]

Upper bounding the defect
Now that we have seen that the approximations look good we try to rigorusly bound the values
instead. Starting with the defect.

We begin with taking only one boundary at a time, to easier see how things behave.

boundary 2 =

1000

let n = 1000
 norms = zeros(Arb, n)
 sum = zero(Arb)
 area = 3
 for i in 1:n
 # Generate random point
 xy = (2rand(Arb) - 1, 2rand(Arb) - 1)
 while xy[1] > 0 && xy[2] < 0
 xy = (2rand(Arb) - 1, 2rand(Arb) - 1)
 end

 # Evaluate u at this point
 sum += abs2(u(xy, λ))
 norms[i] = sqrt(area * sum / i)
 end

 plot(norms, ylims = [0, NaN], label = "")

 norms[end]
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

boundary = 2⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 6/10

[[+/- 9.85e-4], [+/- 3.63e-3], [+/- 3.63e-3], [+/- 9.85e-4]]

let n = num_intervals
 p = boundary_parameterization(boundary)
 pl = plot()

 ts = mince(Arb((0, 1)), n)
 norm.(p.(ts))
 values = u.(p.(ts), Arb(λ))

 xs = [lbound.(ts); ubound(ts[end])]
 lower = [lbound.(values); lbound(values[end])]
 upper = [ubound.(values); ubound(values[end])]
 plot!(pl, xs, lower, fillrange = upper, legend = :none, linetype = :steppre)

 plot!(pl, range(0, 1, length = 1000), t -> u(p(t), λ))
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

let n = 1000
 ts = mince(Arb((0, 1)), n)

 res = zeros(Arb, 4)

 for i = 2:5
 p = boundary_parameterization(i)
 res[i - 1] = maximum(abs.(u.(p.(ts), Arb(λ))))
 end

 res
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 7/10

δ [2.309914238903e-5 +/- 3.58e-18] =

Lower bounding the norm
Now that we have an upper bound for the defect we need to compute a lower bound of the norm. In
the general case this is quite tedious to implement but we will use a simplification which happens
to work in our (simple) case.

We will compute the norm on a subset of the domain, this still gives a lower bound, where the
eigenfunction splits nicely. The subset of the domain we will consider is

δ = let λ = Arb(λ)
 res = zeros(Arb, 4)

 for i = 2:5
 p = boundary_parameterization(i)
 res[i - 1] = ArbExtras.maximum_enclosure(
 t -> u(p(t), λ),
 Arf(0),
 Arf(1),
 abs_value = true,
 degree = 4,
 verbose = true,
)
 end

 maximum(res)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 8/10

On this part of the domain besselj(ν, r * sqrt(λ)) and sin(ν * θ) are orthogonal and the
integral for the norm therefore splits into integrals of the form

For our function we up with, after some simplifications,

norm_lower [0.12065000238833990 +/- 4.41e-18] =

Enclosure of the eigenvalue
The enclosure of the eigenvalue is now given from

where is our approximate eigenvalue and

with being the area of the domain (3 in our case).

ϵ [0.0003316111681481 +/- 5.59e-17] =

([9.636469353125484 +/- 5.99e-16], [9.642862594913888 +/- 7.65e-16])

λ_enclosure [9.64 +/- 3.54e-3] =

norm_lower = let
 θ_integral = 3 // 4 * Arb(π)

 r_integral = zero(Arb)
 a = Arb(1e-1)
 b = Arb(1)
 for i in eachindex(coefficients)
 integral = Arblib.integrate(
 r -> r * besselj(Acb(2i // 3), sqrt(λ) * r)^2,
 a,
 b,
)
 r_integral += coefficients[i]^2 * real(integral)
 end

 sqrt(θ_integral * r_integral)
end

⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅
⋅

ϵ = sqrt(Arb(3)) * δ / norm_lower⋅

λ_lower , λ_upper = (λ / (1 + ϵ)), (λ / (1 - ϵ))⋅

λ_enclosure = Arb((λ_lower, λ_upper))⋅

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 9/10

Proving that it is the first eigenvalue
We have now computed an enclosure for the eigenvalue, but at the moment we don't have any
information about the index.

Why would this be the first eigenvalue? It is numerically obvious from the construction of the
solution, which we skipped here... But it can also be seen by looking at the eigefunction. From the
plot of the eigenfunction above we see that it has a constant sign throughout the domain, this
would imply that it is the first eigenfunction. This is however not something we can rigorously
check, in fact our approximation doesn't have a constant sign, it will oscilate around 0 near the
boundaries.

How can we then prove that the eigenvalue we have is the first one? We will do that by getting a,
rough, lower bound for the second eigenvalue of the domain. If our eigenvalue is lower than the
lower bound for the second eigenvalue then clearly our eigenvalue must be the first one.

To get this lower bound we will use the monotonicity property of the eigenvalues and the domain. If
we consider a larger domain then the eigenvalues are smaller.

Consider the square with side lengths 2 centered at the origin, this contains our domain.

9/15/21, 4:19 PM 🎈 elliptic-pde.jl — Pluto.jl

localhost:1234/edit?id=966aa134-1661-11ec-17d2-775208303778 10/10

A lower bound for the second eigenvalue of this square gives a lower bound for the second
eigenvalue of our original domain.

In this case the new domain is a square with side length 2, the eigenvalues are then known
explicitly. For a rectangle with side lengths and the eigenvalues are given by

In our case and the first eigenvalue is given by

The second eigenvalue is double and given by

Comparing this to our eigenvalue we have

([4.93480220054467931 +/- 1.51e-18], [9.64 +/- 3.54e-3], [12.33700550136169827 +/- 5.55

true

So the eigenvalue we have is lower than the second eigenvalue of our domain, hence it has to be the
first!

Appendix
Some extra methods needed above.

Main.workspace2.mince

Arb(π)^2 / 2, λ_enclosure, 5Arb(π)^2 / 4⋅

Arb(π)^2 / 2 < λ_enclosure < 5Arb(π)^2 / 4⋅

