Ergodicity of Markov processes: theory and computation (4)

Yao Li

Department of Mathematics and Statistics, University of Massachusetts Amherst

September 15, 2021

ICERM, Brown University

Overview

Last three times:

- Find a small set C
- **②** Use Lyapunov function to estimate η_C
- **3** Create an atom α . Estimate η_{α}
- lacktriangledown Use renewal theory to estimate the coupling time au_C

Today: Data-driven computing for ergodicity and invariant probability measures.

Why data-driven? Traditional methods do not work in high dimension!

Outline: Data-driven computation

I. Invariant probability measure

- Combine traditional PDE solver with simulation data.
- Data-driven solver for invariant probability measure.

II. Geometric/power-law ergodicity

- How fast does SDE converge to π ?
- Estimate coupling time from data.

Noise perturbations

ODE system

$$\frac{\mathrm{d}X}{\mathrm{d}t} = f(X)$$

stochastic differential equation (SDE)

$$dX_t = f(X_t)dt + \epsilon \sigma(x)dW_t.$$

Noise perturbations

- Theory for discrete-time Markov process still works
- Transition kernel becomes time-dependent

$$P^t(x,A) = \mathbb{P}[\Phi_t \in A \mid \Phi_0 = x]$$

Infinitesimal generator

$$\mathcal{L}u = \lim_{t \to 0} \frac{P^{t}u - u}{t} = \sum_{i=1}^{n} f_{i}u_{x_{i}} + \frac{1}{2}\epsilon^{2} \sum_{i,j=1}^{n} a_{ij}u_{x_{i}x_{j}}$$

where
$$A = \{a_{ij}\}_{i,j=1}^d = \sigma \sigma^T$$

Fokker-Planck equation and its steady-state

Invariant probability measure

- Let $P^t(x,\cdot)$ be the transition kernel of the SDE
- ullet A probability measure μ is said to be invariant if

$$\mu(A) = \int \mu(\mathrm{d}x) P^t(x,A)$$
 for any measurable A.

Steady-state Fokker-Planck equation

The density function of μ solves equation

$$\mathcal{L}^* u = \frac{1}{2} \epsilon^2 \sum_{i,j=1}^N (a_{ij} u)_{ij} - \nabla \cdot (f u) = 0,$$

where
$$A = \{a_{ij}\}_{i,i=1}^d = \sigma \sigma^T$$
.

Numerical example: Rossler Attractor

Numerical example: Rossler Attractor + noise

How to compute invariant density function?

Numerical PDE approach

Discretize steady-state Fokker-Planck equation

$$\frac{1}{2}\epsilon^2\sum_{i,j=1}^N(a_{ij}u)_{ij}-\nabla\cdot(fu)=0.$$

Problem: What's the boundary condition?

- Sufficiently large numerical domain.
- Use large deviations. Zero boundary.
- Find least square solution.
- High computational cost in general.

How to compute invariant density function?

Monte Carlo method

- Divide the domain into many bins B_1, \dots, B_N .
- Run a long SDE trajectory.
- Count samples in each bin. Estimate density.
- Works for arbitrary numerical domain.

Problem: accuracy

- Not many sample points in each bin. High relative error.
- Solution looks "furry" even with large number of samples.

Numerical example: Gradient flow + rotation

Equation

$$dX_t = (Y_t - 4X_t(X_t^2 + Y_t^2 - 1))dt + dW_t$$

$$dY_t = (-X_t - 4Y_t(X_t^2 + Y_t^2 - 1))dt + dW_t$$

Invariant probability density function

$$\rho(x,y) = \frac{1}{\kappa} e^{-2(x^2+y^2-1)^2},$$

K is a normalizing constant.

Deterministic vector field

Sample density function from Monte Carlo

Solution: Data-driven PDE solver (low dimensional version)

Setting

- $i = 1, \dots, N$ grid points. Solution vector $\mathbf{u} = (u_1, \dots, u_N)$.
- $A\mathbf{u} = 0$: Linear relation from numerical PDE scheme.
- No boundary condition. A is not a full matrix.

Solution: Data-driven PDE solver (low dimensional version)

Use Monte Carlo data

- $\mathbf{v} = (v_1, \dots, v_N)$ is obtained from Monte Carlo simulation.
- Use **v** as a reference for the variational problem

$$\min \|\mathbf{u} - \mathbf{v}\|^2$$
$$A\mathbf{u} = \mathbf{0}$$

Least norm solution

- Let $\mathbf{d} = -A\mathbf{v}$.
- $\mathbf{u}^* = \mathbf{v} + A^T (AA^T)^{-1} \mathbf{d}$ is called the *least norm solution* to the variational problem.

Solution: Data-driven PDE solver (low dimensional version)

- The PDE solver does not rely on the boundary condition now.
- High resolution profile for interested area.
- Still need to solve large linear system.

Mechanism

- $\mathbf{v} \mathbf{u}^{ext}$ is a random vector.
- Optimization problem projects $\mathbf{v} \mathbf{u}^{\text{ext}}$ to Ker(A).
- Projection reduces $\mathbf{u}^* \mathbf{u}^{ext}$.

Error Analysis

Proposition (with M. Dobson and J. Zhai)

Consider $N \times N$ mesh. Assume entries of $\mathbf{v} - \mathbf{u}^{ext}$ be i.i.d. random variables with zero mean and variance ζ^2 . Assume the PDE solver has error $O(N^{-p})$. We have

$$\mathbb{E}[\|u - u^{\text{ext}}\|_{L^2}] \le O(N^{-1/2}\zeta) + O(N^{-p}),$$

where $\|\cdot\|_{L^2}$ is the L^2 numerical integral with respect to grid points.

Error concentration

- Empirical performance is better.
- Error concentrates at the boundary of domain.
- Most principal angles between Ker(A) and Θ_D are small.

Block data-driven solver

- Data-driven solver does not rely on boundary.
- Divide a large N^d domain into $(N/M)^d$ blocks with size M.
- Original cost: N^{pd} . New cost: $M^{(p-1)d}N^d$.
- Empirically M (block size) can be as small as 20 30.
- Most error term concentrates at block boundaries.
- Very efficient for 3D and 4D problems.

Interface error and correction

- Visible interface error occurs on the interface of blocks.
- Error mainly concentrates at boundary points.
- Method 1: Small overlap (1-4 grids) between blocks.
- Method 2: "Half block shift" to cover all interfaces.

Figure: Black: blocks. Red: Overlapping numerical domain. Green: Half step shift.

Solution without any treatment

Solution with 2-grid overlap

Solution after half-block shift

3D example: Rossler attractor

Rossler equation

$$\begin{cases} dx = (-y - z) dt + \varepsilon dW_t^x \\ dy = (x + ay) dt + \varepsilon dW_t^y \\ dz = (b + z(x - c)) dt + \varepsilon dW_t^z \end{cases}$$

Solution on "slices"

Yao Li

Projection of solution

High-dimensional data-driven solver

- Discretization does not work for high dimensional problems.
- ② Higher dimension: approximate the solution by an artificial neural network $\hat{\mathbf{u}}$.
- $\mathbf{v} = (v_1, \cdots, v_N)$ from Monte Carlo simulation.
- New optimization problem

$$\min \|\mathbf{u} - \mathbf{v}\|^2 + \|A\mathbf{u}\|^2$$

What is artificial neural network?

Artificial neural network (ANN)

- ② ANN is a way to approximate functions $y = NN(x, \theta)$
- **2** Parameter θ are coupling weights between neurons
- **3** Adjust θ such that $y = NN(x, \theta)$ approximates y = f(x)
- Minimize a loss function $L(\theta)$ over a training set $(x_1, y_1), (x_2, y_2), \cdots$

High-dimensional data-driven solver

- Two loss functions: $\mathcal{L}_1 = \|\hat{\mathbf{u}} \mathbf{v}\|, \ \mathcal{L}_2 = \|\mathcal{L}^* \hat{\mathbf{u}}\|^2$.
- ② Different training sets for \mathcal{L}_1 and \mathcal{L}_2 .
- Train two loss functions alternatively to avoid adjusting their weights.
- v is usually a very rough approximation in high dimension. Very high spatially uncorrelated noise.

Example 1: 4D ring

$$\begin{cases} dX_t = \left(-4X_t(X_t^2 + Y_t^2 + Z_t^2 + S_t^2 - 1) + Y_t\right)dt + \sigma dW_t^x, \\ dY_t = \left(-4Y_t(X_t^2 + Y_t^2 + Z_t^2 + S_t^2 - 1) - X_t\right)dt + \sigma dW_t^x, \\ dZ_t = \left(-4Z_t(X_t^2 + Y_t^2 + Z_t^2 + S_t^2 - 1)\right)dt + \sigma dW_t^x, \\ dS_t = \left(-4S_t(X_t^2 + Y_t^2 + Z_t^2 + S_t^2 - 1)\right)dt + \sigma dW_t^x, \end{cases}$$

Invariant density

$$u(x, y, z, s) = \frac{1}{K} \exp(-2(x^2 + y^2 + z^2 + s^2 - 1)^2).$$

concentrate near a 4D sphere.

Example1: 4D ring

Example 2: Stochastic heat equation

Consider a discrete stochastic heat equation

$$dU_i = (U_{i-1} + U_{i+1} - 2U_i)dt + dW_t^{(i)}$$

for $i = 1, \dots, N$. Assume $U_0 = U_N = 0$. Invariant probability density given by Lyapunov equation.

- ② Neural network works well when N = 10
- Neural network is not enough (128 hidden neurons) when N = 20.

Example 2: Stochastic heat equation

Power-law ergodicity

- Find a small set C
- **②** Recall that power law tail of η_C is preserved in both η_α and the first simultaneous coupling.
- **3** Simulate the first passage time η_C
- **◎** If $\sup_{x \in C} \mathbb{E}_x[\eta_C^{\beta}] < \infty$, the speed of contraction is $\sim n^{-\beta}$.
- Use extreme value theory to verify the bounded supreme if C has high dimension.

Ref: H. Xu and Y. Li, 2017, JSP

Geometric ergodicity

Definition

 X_t : Markov process with transition kernel P and invariant probability measure π .

 X_t is geometrically ergodic with rate r if

$$\lim_{t\to\infty}\frac{1}{t}\log\|P^t(x,\cdot)-\pi\|_{TV}=-r$$

Importance

- r is the spectral gap for reversible X_t .
- Interplay of deterministic dynamics and noise.
- Difficult to estimate for non-gradient case. Most rigorous results are not sharp.

Recall: coupling lemma

Coupling lemma

- Let $(X_t^{(1)}, X_t^{(2)})$ be a coupling such that if $X_t^{(1)} = X_t^{(2)}$, then $X_s^{(1)} = X_s^{(2)}$ for all s > t.
- $\tau_C = \inf_t \{ \mathcal{X}_t = \mathcal{Y}_t \}$ is the coupling time.

•

$$\|\mu P^t - \nu P^t\|_{TV} \le 2\mathbb{P}_{\mu,\nu}[\tau_C > t].$$

There exists an optimal coupling such that the equality holds.

Upper and lower bound

Lower bound

Estimate r_l such that

$$\mathbb{P}[\tau_C > t] \approx e^{-r_l t}$$
.

 $r_l < r$ is a lower bound of geometric ergodicity rate.

Upper bound

Construct disjoint sets (A_t, B_t) . Run coupling $(\mathcal{X}_t, \mathcal{Y}_t)$ with $\mathcal{X}_0 \in A_0$ and $\mathcal{Y}_0 \in B_0$.

$$\xi_{\mathcal{C}} = \min \left\{ \inf_{t} \{ \mathcal{X}_{t} \notin A_{t} \}, \inf_{t} \{ \mathcal{Y}_{t} \notin B_{t} \} \right\}, \quad \mathbb{P}[\xi_{\mathcal{C}} > t] \approx e^{-r_{u}t}$$

 $r < r_u$ is an upper bound of geometric ergodicity rate.

How to couple numerically

Let $(X_t^{(1)}, X_t^{(2)})$ be a coupling.

- Independent. $X_t^{(1)}$ and $X_t^{(2)}$ are independent until coupling.
- Synchronous. Use the "same noise".
- Reflection. Use "mirroring" random terms.
- Maximal coupling. Compare density function when $|X_{+}^{(1)} X_{-}^{(2)}| \ll 1$.

Example 1: SIR model

SIR model with degenerate noise

$$dS = (\alpha - \beta SI - \mu S)dt + \sigma SdW_t$$

$$dI = (\beta SI - (\mu + \rho + \gamma)I)dt + \sigma IdW_t,$$

Non-degenerate invariant probability measure if $\frac{\alpha\beta}{\mu}-(\mu+\rho+\gamma-\frac{\sigma^2}{2})>0$. Rigorous proof only gives faster-than-power-law ergodicity (Yin et al. 2016 SIADS).

How to couple?

- ullet Synchronous coupling until $|X_t^{(1)} X_t^{(2)}| \ll 1$
- Compute probability density function for two steps.
- Use maximal coupling.

SIR model

Example 2: Coupled Fizhugh-Nagumo oscillators

50 coupled neurons.

$$\begin{split} \mathrm{d}u_i &= \left(\frac{u}{\mu} - \frac{u^3}{3\mu} - \frac{1}{\sqrt{\mu}}v + \frac{d_u}{\mu}(u_{i+1} + u_{i-1} - 2u_i) + \frac{w}{\mu}(\bar{u} - u_i)\right)\mathrm{d}t + \frac{\sigma}{\sqrt{\mu}}\mathrm{d}W_t^1\\ \mathrm{d}v_i &= \left(\frac{1}{\sqrt{\mu}}u + \frac{a}{\sqrt{\mu}}\right)\mathrm{d}t + \frac{\sigma}{\sqrt{\mu}}\mathrm{d}W_t^2\;. \end{split}$$

- $i = 1, \dots, 50$
- d_u: neareast-neighbor coupling strength. w: mean field coupling strength.
- \bar{u} : average membrane potential.

Example 2: Coupled Fizhugh-Nagumo oscillators

- $\omega = 0.4$, $\mu = 0.05$, $\sigma = 0.6$
- Change nearest-neighbor coupling strength du.
- ullet Reflection coupling until $|\mathcal{X}_t \mathcal{Y}_t| \ll 1$
- Compare probability density functions and use maximal coupling.
- Numerical result: higher du gives more coherent evolution, and slower rate of geometric ergodicity.
- Heuristically, strong synchronization makes two trajectories harder to couple.

Coupled Fizhugh-Nagumo oscillators

Yao Li Ergodicity of Markov processes: theory and computation

Comments

- Coupling method is data-driven. No spatial discretization.
- Coupling speed versus noise magnitude depends on the deterministic dynamics.
- Important application: classification of high dimensional potential landscape.
- Ongoing work: Can you hear the shape of a landscape?

Selected Reference

- Li, Y. A data-driven method for the steady state of randomly perturbed dynamics, Communications in Mathematical Sciences, 17(4), 1045-1059, 2019
- Dobson, M., Li, Y. and Zhai, J. An efficient data-driven solver for Fokker-Planck equations: algorithm and analysis, Communications in Mathematical Sciences, accepted
- Dobson, M., Li, Y. and Zhai, J. A deep learning method for solving Fokker-Planck equations, MSML21: Mathematical and Scientific Machine Learning, Aug 16-19, 2021
- Li, Y., Wang, S. Numerical computations of geometric ergodicity for stochastic dynamics , Nonlinearity 33(12), 6935, 2020
- Li, Y., Xu, H. Numerical Simulation of Polynomial-Speed Convergence Phenomenon Journal of Statistical Physics, 169(4), 2017

Thank you