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Overview

Last three times:
@ Find a small set C
@ Use Lyapunov function to estimate 7¢
@ Create an atom «. Estimate 7,

@ Use renewal theory to estimate the coupling time 7¢

Today: Data-driven computing for ergodicity and invariant
probability measures.

Why data-driven? Traditional methods do not work in high
dimension!
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Outline: Data-driven computation

I. Invariant probability measure

@ Combine traditional PDE solver with simulation data.

@ Data-driven solver for invariant probability measure.

[I. Geometric/power-law ergodicity

@ How fast does SDE converge to 77

@ Estimate coupling time from data.
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Topic I: How to compute invariant probability measure?

Noise perturbations

tochastic differential ati
ODE system ?SCSE?S ic differential equation

ax
dt

f(X) dX, = f(X,)dt + eo(z)dW, .
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Topic I: How to compute invariant probability measure?

Noise perturbations

@ Theory for discrete-time Markov process still works

@ Transition kernel becomes time-dependent

Pi(x,A) = P[®; € A| Dy = ]
@ Infinitesimal generator
 Pu—u < 1,
Lu= ll’r[]) — = ; fiuy, + EE uz::l jjUx;x;

where A = {a,-J-}}jJ:l =00’
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Topic I: How to compute invariant probability measure?

Fokker-Planck equation and its steady-state

Invariant probability measure

o Let P'(x,-) be the transition kernel of the SDE

@ A probability measure p is said to be invariant if

u(A) = /,u(dx)Pt(x, A)  for any measurable A.

Steady-state Fokker-Planck equation

The density function of i solves equation

N

1
Lru= 562 Z(a,-ju),-j -V -(fuy=0,
ij=1

where A = {a;j}fszl =o',
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Topic I: How to compute invariant probability measure?

Numerical example: Rossler Attractor
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Topic I: How to compute invariant probability measure?

Numerical example: Rossler Attractor




Topic I: How to compute invariant probability measure?

How to compute invariant density function?

Numerical PDE approach

Discretize steady-state Fokker-Planck equation

2@ ()~ V- (f) =0.

Problem: What's the boundary condition?

e Sufficiently large numerical domain.
@ Use large deviations. Zero boundary.
@ Find least square solution.

@ High computational cost in general.
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Topic I: How to compute invariant probability measure?

How to compute invariant density function?

Monte Carlo method

@ Divide the domain into many bins By, --- , By.
@ Run a long SDE trajectory.
@ Count samples in each bin. Estimate density.

@ Works for arbitrary numerical domain.

Problem: accuracy

@ Not many sample points in each bin. High relative error.

@ Solution looks “furry” even with large number of samples.
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Topic I: How to compute invariant probability measure?

Numerical example: Gradient flow + rotation

dX; = (Ye—4X(C + Y2 —1))dt+ dW;
dY; (=X — 4Y,(X¢ + Y2 —1))dt + dW,

Invariant probability density function

lef2(x2+y271)2
K Y

p(xy) =

K'is a normalizing constant.
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I: How to compute invariant proba measure?

Deterministic vector field

-2 -1 0 1 2




I: How to compute invariant probabi

Sample density function from Monte Carlo




Topic I: How to compute invariant probability measure?

Solution: Data-driven PDE solver (low dimensional
version)

@ i=1,---, N grid points. Solution vector u = (uy,- - , uy).

@ Au = 0: Linear relation from numerical PDE scheme.

@ No boundary condition. A is not a full matrix.

U~ U, Uz U; U

1 1 €

(=5h+ 2h2)”1 h2”2+(hf3+ﬁ)“3 0
1

(—zf2+2h2)uz h2U3-|—( f4+ 2h2) 0

(—lf —|—L)u = u +( fs+ - 5)us = 0
h3 o2/ T R TR 2h2
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Topic I: How to compute invariant probability measure?

Solution: Data-driven PDE solver (low dimensional
version)

Use Monte Carlo data

@ v=(vi, -, vy) is obtained from Monte Carlo simulation.

@ Use v as a reference for the variational problem

min [Ju — v||?
Au=0

Least norm solution

@ Letd = —Av.

o u* =v+ AT(AAT)~1d is called the least norm solution to the
variational problem.
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Topic I: How to compute invariant probability measure?

Solution: Data-driven PDE solver (low dimensional
version)

@ The PDE solver does not rely on the boundary condition now.
@ High resolution profile for interested area.

@ Still need to solve large linear system.

Mechanism

o v —u®%is a random vector.
e Optimization problem projects v — u®* to Ker(A).

@ Projection reduces u* — u®*t.
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Topic I: How to compute invariant probability measure?

Error Analysis

Proposition (with M. Dobson and J. Zhai)

Consider N x N mesh. Assume entries of v — u®* be i.i.d. random
variables with zero mean and variance (2. Assume the PDE solver
has error O(N~P). We have

E[llu — u®|2] < O(N2¢) + O(NP),

where || - ||;2 is the L2 numerical integral with respect to grid
points.

Error concentration

@ Empirical performance is better.
@ Error concentrates at the boundary of domain.

@ Most principal angles between Ker(A) and ©p are small.
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Topic I: How to compute invariant probability measure?

Block data-driven solver

Data-driven solver does not rely on boundary.

Divide a large N9 domain into (N/M)9 blocks with size M.
Original cost: NP9, New cost: M(P—1)dpd.

Empirically M (block size) can be as small as 20 — 30.
Most error term concentrates at block boundaries.

Very efficient for 3D and 4D problems.
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Topic I: How to compute invariant probability measure?

Interface error and correction

@ Visible interface error occurs on the interface of blocks.
@ Error mainly concentrates at boundary points.

@ Method 1: Small overlap (1 — 4 grids) between blocks.
@ Method 2: "Half block shift” to cover all interfaces.

Figure: Black: blocks. Red: Overlapping numerical domain. Green: Half
step shift.
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I: How to compute invariant proba

Solution without any treatment




I: How to compute invariant proba

Solution with 2-grid overlap




I: How to compute invariant proba

Solution after half-block shift




: How to compute invariant probab

3D example: Rossler attractor

Rossler eq n

dx = (—y— z)dt + e dW
dy = (x+ ay) dt + e dW/ :
dz= (b+ z(x— ¢)) dt + e dWZ
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Topic I: How to compute invariant probability measure?

Solution on “slices”

10 0.03
0.02

0
0.01




Topic I: How to compute invariant probability measure?

Projection of solution
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Topic I: How to compute invariant probability measure?

High-dimensional data-driven solver

@ Discretization does not work for high dimensional problems.

@ Higher dimension: approximate the solution by an artificial
neural network .

@ v=(v1, -, vy) from Monte Carlo simulation.

@ New optimization problem
min |[u — v||2 + || Au||?

© What is artificial neural network?
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Topic I: How to compute invariant probability measure?

Artificial neural network (ANN)
=
A

N
( ) g \“',‘!,‘"‘
V% ) (

@ ANN is a way to approximate functions y = NN(x, 6)

@ Parameter 0 are coupling weights between neurons

@ Adjust 6 such that y = NN(x, 0) approximates y = f{(x)

@ Minimize a loss function L() over a training set
(x1,31), (2, y2), -+
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Topic I: How to compute invariant probability measure?

High-dimensional data-driven solver

@ Two loss functions: £1 = ||G — v||, £ = ||£*{]|2.

@ Different training sets for £1 and L».

@ Train two loss functions alternatively to avoid adjusting their
weights.

@ v is usually a very rough approximation in high dimension.
Very high spatially uncorrelated noise.

Yao Li godicit: Aarkov pr theory and computation



Topic I: How to compute invariant probabili

Example 1: 4D ring

dXe = (—4X(X2+ Y2+ 22+ 2 — 1) + Vi) dt + o dW5,
dYe= (—4Y(X2+ Y2+ Z2+ 57 — 1) — X;) dt + 0 dW,
dZ; = (—4Z(X2 + Y2 + 22 + S2 — 1)) dt + o dWZ,
dSe = (—45:(X2 + Y2 + Z2 4+ S7 — 1)) dt + o dW,

Invariant density
1
u(x,y,z,s) = 7{exp(—2(x2 +V+ P+ — 1)2) .

concentrate near a 4D sphere.
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I: How to compute inva

Examplel: 4D

xy-sliceatz=0,s=0 xy-slice atz=05,s=0.5 xy-sliceatz=1,s=0 xy-sliceatz=1,s=1

2 -2

L2 error = 0.036611 L2 error = 0.036683 L2 error = 0.031173 L2 error = 0.0094865
-2 0.04 -2 0.04 -2 0.04 -2 0.04

1 % ‘ 0.02 El ' 0.02 El 0.02 El 0.02
L ®
. . vy
-

0 o 0 o 0 o 0 1]
\ ’ -
. \ -
1 . -0.02 1 -0.02 1 -0.02 1 -0.02
2 -0.04 2 -0.04 2 -0.04 2 -0.04




Topic I: How to compute invariant probability measure?

Example 2: Stochastic heat equation

Consider a discrete stochastic heat equation
AU; = (Uj—1 + Uiy — 20U;)dt + dWA)

fori=1,---,N. Assume Uy = Uy = 0. Invariant probability
density given by Lyapunov equation.

@ Neural network works well when N = 10

@ Neural network is not enough (128 hidden neurons) when
N = 20.
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I: How to compute invariant probabi

Yy measure?

Example 2: Stochastic heat equation

(x“’ X®) slice from 10D distribution
narrow first hidden layer
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(X(') X(z)) slice from exact solution
(x“’, %@) slice from 10D distribution

wide first hidden layer
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x™, x@) slice from 20D distribution
narrow first hidden layer
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x™M, x®) slice from 20D distribution
wide first hidden layer




Topic II: Geometric/power-law ergodicity

Power-law ergodicity

Q Find a small set C

@ Recall that power law tail of 7¢ is preserved in both 7, and
the first simultaneous coupling.

@ Simulate the first passage time n¢
QIf supxeCEX[ng] < 00, the speed of contraction is ~ n~5.

@ Use extreme value theory to verify the bounded supreme if C
has high dimension.

Ref: H. Xu and Y. Li, 2017, JSP
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Topic II: Geometric/power-law ergodicity

Geometric ergodicity

Definition
X¢: Markov process with transition kernel P and invariant
probability measure 7.

X is geometrically ergodic with rate r if

N
Jfim —log [[P(x,-) = mllrv = —r

Importance

@ ris the spectral gap for reversible X;.
@ Interplay of deterministic dynamics and noise.

o Difficult to estimate for non-gradient case. Most rigorous
results are not sharp.
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Topic II: Geometric/power-law ergodicity

Recall: coupling lemma

o Let (Xgl),X?)) be a coupling such that if x§1) = Xﬁz), then
x§1) = ng) for all s > t.

o 7c = inf{X; = V:} is the coupling time.

o

||,U,Pt = I/PtH TV < 2P#7V[Tc > t] .

@ There exists an optimal coupling such that the equality holds.
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Topic II: Geometric/power-law ergodicity

Upper and lower bound

Estimate r; such that

Plrc > ] ~ e .

r < ris a lower bound of geometric ergodicity rate.

Upper bound

Construct disjoint sets (A¢, Bt). Run coupling (X:, V¢) with
Xo € Ag and Y € Bp.

£c = min {iqf{xt ¢ Addinf(V: ¢ Bt}} , Plec> et

r < ry is an upper bound of geometric ergodicity rate.
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Topic II: Geometric/power-law ergodicity

How to couple numerically

Let (Xﬁ”,Xﬁ”) be a coupling.
@ Independent. Xgl) and X(t2) are independent until coupling.
@ Synchronous. Use the “same noise”.
@ Reflection. Use “"mirroring” random terms.

@ Maximal coupling. Compare density function when

XY - x| < 1.

_—An+1
_y71+1
0.5 b
0 . ! ! ! !
-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5
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Topic II: Geometric/power-law ergodicity

Example 1: SIR model

SIR model with degenerate noise

dS = (a — 8SI— pS)dt + o Sd W,
dl = (BSI— (p + p +y))dt + o ld W,

Non-degenerate |nvar|ant probability measure if
O‘B —(p+p+v-— —) > 0. Rigorous proof only gives
faster—than power-law ergodicity (Yin et al. 2016 SIADS).

How to couple?

o Synchronous coupling until |X{") — x{?| < 1
@ Compute probability density function for two steps.

@ Use maximal coupling.
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SIR trajectory up to T = 100

log P[r > time]

SIR model, slope = -0.53349




Topic II: Geometric/power-law ergodicity

Example 2: Coupled Fizhugh-Nagumo oscillators

50 coupled neurons.

u Bl d w ) o
duj=—— = — —=v+ (up1 + uii1 — 2u) + —(0— ;) ) dt + —d WA
<3uﬁﬂ<+11>u()ﬁt
dv, = (—u+—)dt+—d|/\/2
e i=1---,50

@ d,: neareast-neighbor coupling strength. w: mean field
coupling strength.

@ U: average membrane potential.
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Topic II: Geometric/power-law ergodicity

Example 2: Coupled Fizhugh-Nagumo oscillators

w=04 p=0.050=0.6
Change nearest-neighbor coupling strength du.
Reflection coupling until |X; — Vi < 1

Compare probability density functions and use maximal
coupling.

@ Numerical result: higher du gives more coherent evolution,
and slower rate of geometric ergodicity.

@ Heuristically, strong synchronization makes two trajectories
harder to couple.
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FHN model with d

50
Neuron ID

FHN model with du

Neuron ID

100

50 100
Neuron ID

2
1
0
-1
2
0 50 100
Neuron ID

Cooupling time distribution for FHN model

log(P[7 > time])




Topic II: Geometric/power-law ergodicity

Comments

Coupling method is data-driven. No spatial discretization.

Coupling speed versus noise magnitude depends on the
deterministic dynamics.

Important application: classification of high dimensional
potential landscape.

Ongoing work: Can you hear the shape of a landscape?

Yao Li Ergodicit; / v theory and computation



Topic II: Geometric/power-law ergodicity
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