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1. Space-time resonant interactions at large scale

We first remark from the defining relation of p:

∇ηΦ(ξ, p(ξ)) = 0

that
dp

dξ
= [∇2

ηηΦ(ξ, p(ξ))]−1 ◦ ∇2
ηξΦ(ξ, p(ξ)) (1.1)

is invertible.
Here we treat the case of inputs coming from free waves located far away from the origin. In order to

simplify the presentation, we will only consider inputs that would have come from our first guess1 (that
is |x|1+βf is bounded in L2).

Hence, we now consider the case when at least one function f or g is supported away from the origin
and assume that for all y1 in the support of f and all y2 in the support of g,

Y1/2 ≤ |y1| ≤ 2Y1, Y2/2 ≤ |y2| ≤ 2Y2, Y = max(Y1, Y2), T
1
2 ≤ Y ≤ T

Note in particular that there are at most O(log T )2 values of Y1, Y2 possible.
We start again by decomposing the Kernel

K = KR +KN

KN (x, y1, y2, s) =

∫
R3×R3

(1− ϕ(δ−1
X ∇ηΦ(ξ, η)))ϕ̃~k(ξ, η)eisΦ(ξ,η)eiξ[y1−x]eiη[y2−y1]dηdξ,

ϕ̃~k(ξ, η) = ϕk(ξ)ϕk1(ξ − η)ϕk2(η)

and this time, we see that, upon integrating by parts,∫
R3×R3

(1− ϕ(δ−1
X ∇ηΦ(ξ, η)))ϕ̃~k(ξ, η)eisΦ(ξ,η)eiξ[y1−x]eiη[y2−y1]dηdξ

=
i

s

∫
R3×R3

eiξ[y1−x]eisΦ(ξ,η)divη

{
∇ηΦ(ξ, η)

|∇ηΦ(ξ, η)|2
(1− ϕ(δ−1

X ∇ηΦ(ξ, η)))ϕ̃~k(ξ, η)eiη[y2−y1]

}
dηdξ

and we see that now the worst case happens when the derivative hits the term eiη[y2−y1]. Hence, letting

δX = T−1Y T δ

we still get that each integration by parts brings a factor of T−δ and since we can iterate this as many
times as we want, we get that KN leads to negligible contributions.

It thus suffices to consider the coherent part of the interaction:

IT,C(x) =

∫
R×R3×R3

ϕ(δ−1
X ∇ηΦ(ξ, η))ϕ̃~k(ξ, η)eisΦ(ξ,η)e−ixξ f̂(ξ − η)ĝ(η)dηdξ,

1Recall however that the new inputs created by inputs at small scale (i.e. essentially concentrated in a region of size

� T 1/2) barely fail to satisfy this integrability condition.
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where we consider normalized inputs

‖|x|1+βf‖L2 + ‖|x|1+βg‖L2 ≤ 2,

for some β > 0 such that β � δ.
Note that we are in a situation strictly worse than before since we have localized η in a region larger.

In addition, as Y → T , we see that the scale at which we localize goes to 1 and in the end, we consider
the whole Fourier support of our functions. To compensate for this, we need norms that penalize the
distance to the origin and we need to make sure that the control we gain from this compensates the loss
coming from the fact that we get less and less precise description of our output.

Assuming that Y1 ≥ Y2, we first remark that a näıve use of Plancherel would already give us that

‖IT (x)‖L2 . T sup
t
‖eisΛ2f · eisΛ3g‖L2 . T‖f‖L2

[
sup
s'T
‖eisΛ3g‖L∞

x

]
. T−

1
2 ‖f‖L2‖g‖L1

. T−
1
2Y −

1
2−2β .

This is at least T−3/4−δ and thus we see that i) we already have with little work that |x| 34 I ∈ L2 ii)
when we lose our localization (i.e. when δX ' 1), then Y = T and we have already recovered what we
wanted. In other words, we are in a transitory regime.

Now, we could try to go the same route as before and perform an integration by parts in time. However,
we saw before that the corresponding control needed was the L∞-norm of the Fourier transform, that we
would now need to penalize with respect to distance from the origin (Y1 or Y2). Instead, since we have
less to gain, we will find a more robust way to get a gain from L2-orthogonality in the time integral.

We now consider the ξ-derivative of the oscillatory phase:

∇ξ [sΦ(ξ, η)− x · ξ] = s∇ξΦ(ξ, η)− x = s∇Ψ(ξ)− x+O(sδX)

= s∇Ψ(ξ)− x+O(T δY ).
(1.2)

Since by assumption, we have that |∇Ψ| 6= 0, we see that this phase is large unless the angle in ξ is
restricted and s is well chosen to be |x|/|∇Ψ|. This is the extra orthogonality that we want to use.

We start by estimating the uncertainty in (1.2). We remark that a change of s of size δT = T δY could
still be accounted for in the error, and similarly for a change of ξ of size δX and a change in x of size δT .
Thus, we may define the corresponding localizations of the integral:

Iz,ζ,σT (x) =

χ3(δ−1
T x− z)

∫
R×R3×R3

θ(
s

T
)χ3(δ−1

X ξ − ζ)χ(δ−1
T s− σ)ϕ(δ−1

X ∇ηΦ(ξ, η))ϕ̃~k(ξ, η)eiΦ̃(ξ,η)f̂(ξ − η)ĝ(η)dηdξ

Φ̃(ξ, η) = sΦ(ξ, η)− x · ξ
(1.3)

where z, ζ ∈ Z3, σ ∈ Z and χ3(x, y, z) = χ(x)χ(y)χ(z), where

χ ∈ C∞c (R),
∑
k∈Z

χ(x− k) ≡ 1.

We claim that all the elements in this family are almost orthogonal (up to a remainder of T−100). This
is clear when z or ζ vary. Thus, to show orthogonality in σ, it suffices to show that for each choice of
(ζ, σ), there holds that

|Iz,ζ,σT | . T−100, ∀z /∈ Sζ,σ (1.4)

where Sζ,σ has bounded cardinality.
To show this, we just examine (1.2) and we see that for s, ξ in the support of Iz,ζ,σ, there holds that

∇ξΦ̃(ξ, η) = ∇ξ [sΦ(ξ, η)− x · ξ] = σδT∇Ψ(δXζ)− x+O(δT ).
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This is essentially the distance of x to a fixed point, up to an uncertainty of δT . Thus, we see that,
outside of a ball of radius O(δT ), there holds that

|∇ξΦ̃| & δT .

On the other hand, we may integrate by parts in ξ in the definition of K to get∫
R×R3×R3

χ3(δ−1
X ξ − ζ)χ(δ−1

T s− σ)ϕ(δ−1
X ∇ηΦ(ξ, η))ϕ̃~k(ξ, η)eisΦ̃(ξ,η)f̂(ξ − η)ĝ(η)dηdξ

=

∫
R×R3×R3

χ(δ−1
T s− σ)eisΦ̃(ξ,η)ĝ(η)divξ

{
∇Φ̃

|∇ξΦ̃(ξ, η)|2
χ3(δ−1

X ξ − ζ)ϕ(δ−1
X ∇ηΦ(ξ, η))ϕ̃~k(ξ, η)f̂(ξ − η)

}
dηdξ,

and we see that at each integration by parts, we have a gain of Y δ−1
T + δ−1

X δ−1
T ' T−δ. This gives (1.4).

Now that we have transfered the obvious orthogonality in x to an orthogonality in s, we deduce that

‖IT ‖2L2 =
∑
z,σ,ζ

‖Iz,ζ,σT ‖2L2 . (1.5)

Besides, we have also seen that each choice of (σ, ζ) determines at most a bounded number of z and
therefore, we can ignore the summation in z in the sum above.

Now, consider an elementary interaction in (1.3), and remark that both η and ξ are restricted to balls
of size δX . But this also restricts the support of the relevant functions f , g, so that, introducing

f̂ζ(ξ) := f̂(ξ)χ(δ−1
X ξ − ζ + p(ζ))

ĝζ(ξ) := ĝ(ξ)χ(δ−1
X ξ − p(ζ)),

we see, if p is a nice diffeomorphism (which we may always assume from (1.1)) that Iz,ζ,σT only depends
on fζ and gζ and that ∑

ζ

‖fζ‖2L2 . ‖f‖2L2 ,
∑
ζ

‖gζ‖2L2 . ‖g‖2L2 ,

which essentially take care of the sum in ζ in (1.5).

Now, we may estimate Iz,ζ,σT rather crudely using a variant of the Plancherel theorem as above (in
fact (2.1) below) to get (assuming that Y1 ≥ Y2)

‖Iz,ζ,σT ‖L2 . δT ‖fζ‖L2 sup
s≥T/4

‖eisΛ3gζ‖L∞ . δTT
−3/2‖fζ‖L2‖g‖L1 .

Remarking that there are O(Tδ−1
T ) values of σ for which

θ(
s

T
)χ(δ−1

T s− σ) 6= 0

and that each choice of (ζ, σ) defines a bounded number of z, we finally obtain that

‖IT ‖2L2 .
∑
σ,ζ

‖Iz,ζ,σ,σT ‖2L2 . Tδ−1
T

∑
ζ

(δTT
− 3

2 ‖fζ‖L2‖g‖L1)2

. δTT
−2‖f‖2L2‖g‖2L1 .

Hence, assuming that |x|1+βf, |x|1+βg ∈ L2, we see that

T 1+β‖IT ‖L2 . T 1+β · (Y T δ−2)
1
2 · Y −1−β · Y

3
2−1−β

2 . T β+ δ
2Y −

1
2−βY

1
2−β

2 ,

and we see that we have a good chance of making this summable.
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2. Some simple results from Fourier analysis

The elementary lemma to control bilinear term is the following simple lemma:

Lemma 2.1.

‖F−1

∫
R3

m(ξ, η)f̂(ξ − η)ĝ(η)dη‖Lp . ‖Fm‖L1(R3×R3)‖f‖Lq(R3)‖g‖Lr(R3),
1

p
=

1

q
+

1

r
. (2.1)

This follows directly from the formula

F−1

∫
R3

m(ξ, η)f̂(ξ − η)ĝ(η)dη =

∫
R3

(Fm)(z, t)f(x+ z)g(t+ z + x)dzdt.

We also need an efficient stationary phase lemma:

Lemma 2.2. Assume that 0 < ε ≤ 1/ε ≤ K, N ≥ 1 is an integer, and f, g ∈ CN (Rn). Then∣∣∣ ∫
Rn
eiKfg dx

∣∣∣ .N (Kε)−N
[ ∑
|ρ|≤N

ε|ρ|‖Dρ
xg‖L1

]
, (2.2)

provided that f is real-valued,

|∇xf | ≥ 1supp g, and ‖Dρ
xf · 1supp g‖L∞ .N ε1−|ρ|, 2 ≤ |ρ| ≤ N. (2.3)

Proof of Lemma 2.2. We localize first to balls of size ≈ ε. Using the assumptions in (2.3) we may assume
that inside each small ball, one of the directional derivatives of f is bounded away from 0, say |∂1f | &N 1.
Then we integrate by parts N times in x1, and the desired bound (2.2) follows. �

3. Choice of norms

3.1. Definition of the norms. We naturally introduce a partition of unity consistent with the infor-
mation that we want to quantify (momentum and frequency):

(Qj,kf)(x) = ϕ
(k)
j (x) · Pkf(x)

P̂kf(ξ) = ϕ(2−kξ)f̂(ξ) ϕ
(k)
j (x) =

{
ϕ(2−jx) if j + k > 0

φ(2kx) if j + k = 0

where ϕ(x) = φ(x) − φ(2x) and φ(x) = 1 when |x| ≤ 1 and φ(x) = 0 when |x| ≥ 2. Thus we see that
Qj,k, defined for all (k, j) ∈ Z×N such that j + k ≥ 0 essentially localizes to distance about 2j from the
origin and to frequency about 2k provided that we respect the uncertainty principle 2k · 2j ≥ 1.

Indeed, in our situation, we do not expect small spatial scales (corresponding to j ≤ 0) to play a
particular role (e.g. the initial data does not constrain these at all); therefore, it makes little sense to
allow for j ≤ 0. In addition, there is no point localizing below the uncertainty principle: since

Pkf = 23kϕ(2k·) ∗ f,

we see that |∇Pkf | ' 2k|Pkf | and therefore, Pkf is locally constant at scales smaller than 2−k, and the
norms

‖Pkf‖L2(|x|'2j), j ≤ −k

are monotonically increasing (and summable) in j until j = −k. Thus in this situation, it suffices to

consider ϕ
(k)
j Pkf .
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Now, we are equipped with a prototype for the norms we want to consider2, at least for frequencies
about 1:

‖f‖B1
j,0

= sup
j

{
2(1+β)j‖Qj,0f‖L2 + ‖Q̂j,0f‖L∞

}
,

‖f‖B2
j,0

= sup
j

{
2(1−β)j‖Qj,0f‖L2 + ‖Q̂j,0f‖L∞ + 2γj‖Q̂j,0f‖L1

}
.

Now, a way to normalize these norms in their dependence in the frequency parameter k in a consistent
way is to ask that all the terms give out the same number for a typical function at the uncertainty
principle level and centered at 0:

f(x) = 23kϕ(2kx), f̂(ξ) = ϕ̂(2−kξ) 2(1+β)j‖Qj,kf‖L2 ' 2( 1
2−β)k ' 2( 1

2−β)k‖Q̂j,kf‖L∞ , j = −k,
and similarly, for the same function,

2( 1
2−β)k ' 22βk2(1−β)j‖Qj,kf‖L2 ' 2( 1

2−β)k‖Q̂j,kf‖L∞ ' 2(γ− 5
2−β)k2γj‖Q̂j,kf‖L1 .

Finally, since we want to be able to sum these norms and allow them to control a large number of
derivative (say 10), we obtain the norm

‖f‖Z = sup
j+k≥0

[
2αk + 210k

]
‖Qj,kf‖Bj,k ,

‖f‖Bj,k = sup
f=g+h

{
‖g‖B1

j,k
+ ‖h‖B2

j,k

}
,

‖f‖B1
j,k

= 2(1+β)j‖f‖L2 + 2(1/2−β)k‖f̂‖L∞ ,

‖f‖B2
j,k

= 2(1−β)j22βk‖f‖L2 + 2(1/2−β)k‖f̂‖L∞ + 2γj2(γ−5/2−β)k‖f̂‖L1 .

In fact, we will have to precise a little the last component of the B2 norm, but then the corresponding
modification will be handled similarly.

3.2. Requirements. At this point, we are almost ready to use this norm to prove the boundedness of
the quadratic interactions. We only need to check first

(1) that this norm is invariant by Calderón-Zygmund operators in the sense that

‖Qf‖Z . ‖f‖Z
whenever Q̂f = q(ξ)f̂(ξ) and

sup
|α|≤100

|∂αq(ξ)| ≤ |ξ|−|α|.

(2) that boundedness in this norm guarantees that the linear flow is integrable:

‖eitΛf‖W 5,∞ . (1 + |t|)−1−β‖f‖Z .
(3) that the evolution leads to linear profiles continuous in the Z norm, i.e.

sup
[0,T ]

‖f‖Z <∞, ‖f(t+ s)− f(t)‖Z → 0, s→ 0

for all t in the domain of definition of f .

The last bullet is obtained by showing that

‖∂tf‖Z < +∞
Whenever f(0) is bounded in Z and f ∈ C([0, T ] : HN ). In fact, we even show boundedness of ∂tf only
in the B1-norm.

2Here and in the following, we let γ = 9/8.
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3.3. Decay of the free flow. That boundedness in the B1-norm implies integrable decay for free
solutions follows from the decay estimates. For the B2-norm, it is just a bit more complicated. For
notational simplicity, we only consider the case k = 0. In this case, we have, on the one hand

‖eitΛQjf‖L∞ . t−
3
2 ‖Qjf‖L1 . t−

3
2 2

3
2 j‖Qjf‖L2 . t−1−β

[
t−

1
2 +β2( 1

2 +β)j
]
‖f‖B2

j,k
.

This is sufficient so long as j ≤ 9/10 log2 t (summable in j). On the other hand, we also have that

‖eitΛQjf‖L∞ . ‖Q̂jf‖L1 . 2−γj‖f‖B2
j,k
. t−1−β [t1+β2−γj

]
‖f‖B2

j,k

which is good when j ≥ 9/10 log2 t (summable in j).

4. Overview of the proof

As explained above, we proceed in two main steps:

• An energy estimate step which reduces the proof to the a priori control of t1+β‖u(t)‖W 5,∞ as-
suming a global bound on some HN -norm, N � 1,

• A decay estimate to enforce this control,

and we focus here on this last step. After a suitable choice of norms and making sure that these norms
are invariant by Calderón-Zygmund operators, we need to prove an estimate like

sup
t
{‖Tσ;µ,ν [f, g](t)‖Z + ‖|∇|Tσ;µ,ν [f, g](t)‖Z} . sup

t∈R
{‖f(t)‖Z∩HN ‖g(t)‖Z∩HN } ,

where

FTσ;µ,ν [f, g](ξ, t) =

∫ t

s=0

∫
Rd
eisΦ

σ;µ,ν(ξ,η)f̂(ξ − η, s)ĝ(η, s)dηds.

In order to fully use the atomic structure of our spaces, we need to decompose the functions f and g.
We also decompose the time into slices of dyadic length s ∈ [T, 2T ], T ≤ t. This gives the sum

sup
t,k,j,m

∑
k1+j1≥0
k2+j2≥0

2β
10(|k1|+j1+|k2|+j2+m)(1 + 2k)‖ϕ(k)

j (x)Tσ;µ,ν
m,k,k1,k2

[fk1,j1 , gk2,j2 ]‖Z

. sup
t∈R
{‖f(t)‖Z∩HN ‖g(t)‖Z∩HN } ,

(4.1)

where

FTσ;µ,ν
m,k,k1,k2

[f, g](ξ) =

∫
R×Rd

qm(s)ϕk(ξ)ϕk1(ξ − η)ϕk2(η)eisΦ
σ;µ,ν(ξ,η)f̂(ξ − η, s)ĝ(η, s)dηds,

where

fk1,j1 = ϕ
(k1)
j1

(x) · Pk1f, gk2,j2 = ϕ
(k2)
j2

(x) · Pk2g
and qm is a positive function supported into [2m, 2m+1] satisfying∫

R
q′m(s)ds = 1.

At this point, the only fact that we need to remember from the fact that f, g satisfy specific equations
is the following bound, which is a somewhat easy consequence of simple bounds on the nonlinearity3

‖∂tPkf‖L2 . t−1−β min(2k, 2−30k), ‖∂tf̂‖L∞ . t−1+1/10,

and similarly for g.
Once we have simplified matters this much, we need to start estimating the sum above as follows:

3Recall that ∂tf precisely equals the nonlinearity we are facing.
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(1) First, we use simple estimates (describing the inputs using the energy estimate norm) to remove
the most simple cases (essentially large k, k1, k2 and when one parameter is too unbalanced).
This allows us to reduce to the case of only a logarithmic (in j +m) number of cases, so that it
suffices to bound each summand in (4.1) uniformly.

(2) Second, we use the weighted norm description in order to i) by finite speed of propagation reduce
to the case when j, j1, j2 ≤ m (i.e. with our notations j ≤ m), ii) remove the non coherent-
resonant cases.

(3) Third, we use the sum-space decomposition to finish the analysis by i) removing the “joint point”
(1− β/10)m ≤ j1 ≤ j2 ≤ m and finally ii) treating the coherent-resonant case.

Informally, the idea in steps 2 and 3 is that we can rewrite the evolution as

∂tf = ∂t {Q(f, f)}+ T (f, f) +R(f, f)

where Q(f, f) is a quadratic change of unknown such that the mapping f 7→ f + Q(f, f) is bounded
HN ∩Z → Z, T (f, f) represents only transverse interactions carried by waves which move in a transverse
way and finally R(f, f) is the left-over part which is, hopefully more localized and hence has a simpler
structure.

Informally speaking, step 2 essentially treats the effect of Q and T while step 3 treats the effect of R
once we have understood how to allow for the outputs it produces.

We refer to [1] for more details.
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