
Baker-Campbell-Hausdorff Formula

Charles Daly

Summary

These notes are dedicated to a summary of the Baker-Campbell-Hausdorff Formula.
They are take directly from Brian Hall’s proof from ‘Lie Groups, Lie Algebras, and
Representations’ [3] written with my thoughts. I wrote these notes up to provide to
the class when covering for Dr. Goldman. I strongly encourage the reader to check out
Brian Hall’s proof, as it is outstandingly clear and probably the most accessible version
of the proof that I’ve seen. Though the proof is specialized specifically to the case of
matrix groups, it conveys all the main ideas of the general proof in an admirably clear
fashion.
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1 Motivation

One of the main applications I have seen of the Baker-Campbell-Hausdorff formula, hence-
forth in these notes referred to as the BCH formula, is to prove Lie’s Third Theorem. This
theorem loosely states that every lie algebra homomorphism is as good as a lie group homo-
morphism, provided the domain lie group is simply connected.

That such a formula exists is somewhat remarkable, and is the topic of these notes. Once the
formula is introduced, we will go on to show how to construct the corresponding lie group
homomorphism. After the proof of Lie’s Third Theorem, we return to the proof of the BCH
formula in both its series and integral formulation. As stated in the summary, these notes
are taken directly from Brian Hall’s text ‘Lie Groups, Lie Algebras, and Representations’ [3].
I have shuffled around some of the ideas, omitted certain parts, added my own, but never-
theless all the ideas here are largely contained in his text. It seems a good a place as any to
state the main formula here.

Theorem 1. (BCH Formula) Let G be a lie group and denote the exponential map exp :
g −→ G where g is the lie algebra of G. There exists a sufficiently small open subset
0 ∈ U ⊂ g so that the exponential map admits a local inverse, denoted log : exp(U) −→ U
so that for all exp(X) exp(Y ) ∈ exp(U) one has

log(expX expY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . . (1)

It is not obvious what the remaining terms or pattern is for the rest of the above formula,
but that is fine, as the take away here is that Equation 1 may be written entirely in terms of
X, Y and iterated brackets of X and Y . What this is saying is that, at least locally, the lie
algebra of a lie group determines the group structure. Perhaps this provides some intuition
as to why the following theorem holds.

Theorem 2. (Lie’s Third Theorem) Let G and H be lie groups where G is simply connected,
and let φ : g −→ h be a lie algebra homomorphism. There exists a lie group homomorphism
Φ : G −→ H so that the following diagram commutes

G H

g h

Φ

exp

φ

exp (2)

The hypothesis that G be simply connected is indeed necessity, as one can easily construct
lie algebra homomorphisms which do not have corresponding lie group homomorphisms. A
simple example would be take the circle group as G and the vector space R as H. Certainly
these lie algebras are isomorphic, but there is no non-trivial lie algebra homomorphism from
G to H, for if Φ(eiθ) = x ∈ R for some non-zero x, then Φ(einθ) = nx which is arbitrarily
large, thus violating compactness of Φ(S1) ⊂ R.

Before actually moving onto the next section, I find it edifying to take a baby step to
prove the following from John Lee’s ‘Smooth Manifolds’ [4]. This is Proposition 20.10 in the
second edition.
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Theorem 3. (John Lee’s Smooth Manifolds Prop 20.10) Let G be a lie group and denote the
exponential map exp : g −→ G where g is the lie algebra of G. For each X, Y ∈ g, there’s
an ε > 0 and a smooth Z : (−ε, ε) −→ g so that

exp(tX) exp(tY ) = exp
(
t(X + Y ) + t2Z(t)

)
(3)

Note that Equation 3 is essentially a baby version of Equation 1. In fact, it’s the statement
that

log (exp(tX) exp(tY )) = t(X + Y ) + t2Z(t) for sufficiently small X,Y

Proof. The proof below is really just an exercise in taking derivatives. Let 0 ∈ U ⊂ g be so
small that exp |U : U −→ exp(U) is a diffeomorphism. If we take X, Y ∈ g, we can find an ε
sufficiently small so that exp(tX) exp(tY ) ∈ U for all |t| < ε. Perhaps it worth noting that
here we’re taking a norm on g, and it doesn’t really matter which one, as all norms of vector
spaces are equivalent in the sense that they all induce the same topology.

Define f : (−ε, ε) −→ g by log (exp(tX) exp(tY )). The map f is smooth as it is the compo-
sition of

(−ε, ε) expX × expY−−−−−−−→ exp(U)× exp(U)
m−−−→ exp(U)

log−−−−→ U

where expX(t) = exp(tX) and expY (t) = exp(tY ), so f is smooth. Taking the differential at
zero yields the sequence of linear maps.

T0R
(d(expX)0,d(expY )0)−−−−−−−−−−−→ g⊕ g

dm(e,e)−−−−→ g
(d(exp)0)−1

−−−−−−→ g (4)

It is worth noting there are several identifications at hand. Firstly, note that since expX
and expY are restrictions of one parameter subgroups, there’s no harm in making the
identification of T0G with g as we have done above. That said, note by construction
d(expX)0(∂/∂t|t=0) = X, and similarly for Y . Moreover, it is a good exercise to show
that the derivative of the multiplication map m at (e, e) takes any pair of tangent vec-
tors (X, Y ) ∈ g × g to their sum X + Y . Finally, since the derivative of the exponential
map d(exp)0 : g −→ g is the identity map, up to appropriate identification, we have that
f ′(0) = df0(∂/∂|t=0) = X + Y . By Taylor’s theorem, there exists a Z : (−ε, ε) −→ g so that
f(t) = f(0) + tf ′(0) + t2Z(t), and thus

f(t) = 0 + t(X + Y ) + t2Z(t) for all t ∈ (−ε, ε)

As mentioned previously, this is arguably the starting point for the BCH-formula and
says loosely that exp(tX) exp(tY ) = exp (t(X + Y ) + higher order terms). The solution for
what those higher order terms are is the BCH formula.

2 Proof of Lie’s Third Theorem

Before providing the proof of the BCH formula, I wanted to provide a proof of Lie’s Third
Theorem for the following reason. There are lots of proofs of the BCH formula, which
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to my knowledge, all in some sense end up taking the derivative of the exponential map
exp : g −→ G, and this derivative is gnarly.

That said, the proof of Lie’s Third Theorem uses a construction which is arguably quite
similar to a method I’ve seen several times in geometry/topology similar to that of analytic
continuation. A little more specifically, one defined a function not on a space M itself, but
rather the homotopy classes of paths of M , which consequently induces a map on the uni-
versal cover of M . Dr. Goldman’s book ‘Geometric Structures on Manifolds’ [2] provides a
treatment of this process in detail with a construction called the developing map. This map
plays an important role in the theory of geometric structures, and its construction uses this
sort of ‘define along a path’ argument.

That said I think I want to spend quite a bit of time filling in the details for this argu-
ment before approaching the proof of the BCH formula. Again as mentioned, this is taken
directly from Brian Hall’s text ‘Lie Groups, Lie Algebras, and Representations.’

Just as was done in the beginning of the proof of this section, I wanted to provide some
motivation before illustrating the actual steps. Let’s say one assumes Equation 1 and wants
to construct the commutative square as in Equation 2. It seems not entirely unreasonable
to begin by ‘defining’ Φ : G −→ H via Φ(exp(X)) = exp(φ(X)).

There are some immediate and obvious challenges to this though. Firstly, it not obvious
at all whether every element of G is expressible as exp(X) for some X ∈ g. In fact, it’s
a good exercise to cook up a lie group where the exponential map is not surjective. As a
hint, looking at two by two matrices will suffice, in fact the negative identity almost does
the trick. In addition, it is far from obvious that even if such an X exists, it is not clear that
exp(φ(X)) would be independent of the choice of X. To make matters worse, why would Φ
defined as such, be a group homomorphism?

The BCH-formula resolves the third issue, whereas the hypothesis that G be simply con-
nected will resolve the first and second. Let us assume for the moment that we have the BCH
formula and we pick neighborhoods U and V of g and h so small where the BCH formula
holds on both, and φ(U) ⊂ V , so that φ is a ‘local’ lie algebra-homomorphism. Now because
we have

log(expX expY ) = X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . .

we may apply φ to both sides to yield

φ (log(expX expY )) = φ(X) + φ(Y ) +
1

2
[φ(X), φ(Y )] +

1

12
[φ(X), [φ(X), φ(Y )]] (5)

− 1

12
[φ(Y ), [φ(X), φ(Y )]] + . . . = log (exp(φ(X)) exp(φ(Y )))

where the last equality holds because we’ve assumed the BCH on V as well. Since eXeY ∈ U ,
and the exponential map is invertible on φ(U), we have

eXeY = elog(eXeY ) (6)
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That said, if we define Φ : exp(U) −→ exp(V ) via Φ(exp(X)) := exp(φ(X)), then by
Equation 6, we have that

Φ(eXeY ) = exp
(
φ
(
log(eXeY )

))
= exp (log (exp(φ(X)) exp(φ(Y ))))

= eφ(X)eφ(Y ) = Φ(eX)Φ(eY )

where the first and fourth equalities are by definition, the second by Equation 5, and the
third by prospect that log and exp are inverses. Note that in the definition of Φ as above,
since we restricted our attention to the case where exp : U −→ exp(U) is a diffeomorphism,
we avoid the issues of whether or not each element in exp(U) is expressible as exp(X) for
some X ∈ g, and questions about whether this map well defined.

It is perhaps worth emphasizing once again that the utility of the BCH formula is not
to be found in the entire expansion of Equation 1. The utility of the BCH formula is found
in the fact that one can express the logarithm of the product of exponentials of X and Y as
the summation of X, Y , and corresponding lie brackets involving X and Y . Roughly speak-
ing, such an expression allows us then to show that if under the conditions that Φ : G −→ H
as defined above is actually a function, it may be promoted to a group homomorphism.

As advertised, we now proceed onto the proof of Theorem 2. This proof will be broken
into several steps, and I strongly encourage the reader to understand each step, as this type
of argument is used in many areas of geometry and topology.

To provide the context again, let G and H be lie groups, with G simply connected, and
φ : g −→ h be a lie algebra homomorphism. Using the BCH formula, we wish to construct
a corresponding Φ : G −→ H that is a is lie group homomorphism.

Proof. (i). A local solution: Much like we did above, let us choose a neighborhood
0 ∈ U ⊂ g so small such that log : exp(U) −→ U is a diffeomorphism. We may also
shrink U if necessary to assume that the BCH formula holds for all eXeY ∈ exp(U). Define
Φ : exp(U) −→ H via

Φ(g) = exp (φ(log(g)))

Note that this definition provides a local solution to the desired homomorphism. We wish
to extend it to a global solution. As is often the case in the scenario of simply connected
spaces, one defines a global quantity by extending a local quantity along paths.

(ii). A global solution: Since G is simply connected, it is in particular connected, and
consequently path-connected. Thus for each g ∈ G, we may find a path γ : [0, 1] −→ G so
that γ(0) = e and γ(1) = g. By compactness of the unit interval, we may choose a mesh of
points 0 = t0 < t1 < . . . < tm = 1 so that for all s, t ∈ [ti, ti+1] for each i we have

g(t)g(s)−1 ∈ exp(U) (7)

Let us denote this condition in Line 7 on a partition by (∗). In particular, since t0 = 0 and
γ(0) = 1, we know that g(t1) ∈ V . Now, we can write g = γ(1) as

g =
(
γ(1)γ(tm−1)−1

)
·
(
γ(tm−1)γ(tm−2)−1

)
· . . . ·

(
γ(t2)γ(t1)−1

)
· γ(t1)
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Let us now define Φ via

Φ(g) = Φ
(
γ(1)γ(tm−1)−1

)
· Φ
(
γ(tm−1)γ(tm−2)−1

)
· . . . · Φ

(
γ(t2)γ(t1)−1

)
· Φ (γ(t1)) (8)

Note that each factor is inside of exp(U) and consequently Φ of each factor is well defined.
We claim that this product is well-defined on homotopy classes of paths and is independent
of partition. We begin by showing the independence of the partition.

(iii). Independence of Partition: Before getting into the proof of this part, it is worth
mentioning that this is the only part of the proof that utilizes the BCH formula. This is also
a relatively standard argument about independence of partitions. One shows that the quan-
tity is unchanged under a refinement, and that every two partitions union to a refinement,
and consequently have the same common value. This type of argument is somewhat similar
to that of the riemann integral construction.

That said let s ∈ (ti, ti+1). Then the factor Φ (γ(ti+1γ(ti)
−1)) as in Equation 8 is replaced

by the product
Φ
(
γ(ti+1)γ(s)−1

)
· Φ
(
γ(s)γ(ti)

−1
)

Since s is between ti ≤ s ≤ ti+1, we know that both γ(ti+1)γ(s)−1 and γ(s)γ(ti)
−1 in

addition to γ(ti+1)γ(ti)
−1 are all in exp(U). By prospect of the BCH formula, Φ is a local

group homomorphism, thus we have that

Φ (γ(ti+1)γ(ti)) = Φ
((
γ(ti+1)γ(s)−1

)
·
(
γ(s)γ(ti)

−1
))

= Φ
(
γ(ti+1)γ(s)−1

)
Φ
(
γ(s)γ(ti)

−1
)

Consequently, the value of Φ(g) is left unchanged by the addition of an extra partition point.
One can repeat this argument adding any finite number of points to the original partition.

Given two partitions, one may take their union, which is refinement of both partitions.
Since these all share a common value, namely the value of the union, this shows the inde-
pendence of partition.

(iv). Well Defined on Homotopy Classes of Paths: Here we use the fact that G
is simply connected. Choose two paths γ and β starting at the identity e and ending at
g ∈ G. Since G is simply connected, there’s a homotopy h : [0, 1]2 −→ G so that

h(0, t) = β(t) and h(1, t) = γ(t) with fixed endpoints h(s, 0) = e and h(s, 1) = g

The compactness of [0, 1]2 guarantees the existence of an integer N ∈ N so that for all (s, t)
and (s′, t′) in [0, 1]2 where |s− s′| ≤ 2/N and |t− t′| ≤ 2/N , we have h(s, t)h(s′, t′)−1 ∈ V .

The following argument is one that makes several appearances in topology, whereby one
deforms β onto γ bit by bit. Specifically, we define a sequence of paths αk,l where k =
0, . . . , N − 1 and l = 0, . . . , N . Define these paths

αk,l(t) =


h ((k + 1)/N, t) 0 ≤ t ≤ (l − 1)/N

h (k/N, t) l/N ≤ t ≤ 1

h(connecting diagonal) (l − 1)/N ≤ t ≤ l/N
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where connecting diagonal is the line segment in [0, 1]2 connecting ((k+1)/N, (l−1)/N) and
(k/N, l/N). Figure 1 taken from Brian Hall [3] clarifies this definition. Finally, when define
αk,0(t) = α(k/n, t) for all t ∈ [0, 1], so in particular, α0,0 = β and one could say αN,0 = γ.

Figure 1: The path in [0, 1]2 defining αk,l. Note for t ≤ (l − 1)/N we have αk,l =
h ((k + 1)/N, ·) and for l/N ≤ t we have αk,l = h (k/N, ·), both of these are represented
by the vertical bold line segments. Finally, in between (l − 1)/N ≤ t ≤ l/N we have αk,l is
defined on connecting diagonal attaching the two vertical lines.

Think of deforming the path β onto γ in steps. First, deform β = α0,0 into α0,1 and then
into α0,2, . . . , α0,N . From α0,N , deform this into α1,0, then α1,1, . . . , α1,N . Continue until you
reach αN−1,N which deforms onto αN,0 = γ. Below are several pictures to clarify the nature
of this process.

Figure 2: Here the bounding paths represent α0,0 and α1,0. Imagine they are black, but then
covered by the blue path α0,7. Imagine each diamond as one of the i/N points in time, here
we have N = 10. The curve α0,7 agrees with α1,0 up until time t = (7− 1)/10 = 6/10 time
parameter, then in a single 1/10 time, diagonally homotopes back to α0,0.

We wish to show that the value of Φ(g) along each path is the same as the value of
Φ(g) as the next one. By definition, αk,l(t) and αk,l+1(t) are equal, with the exception of t
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Figure 3: Just as in Figure 2, the black bounding paths are α0,0 and α1,0. Here this is a case
to illustrate how if the second parameter in αk/N,∗ is small, then αk/N,∗ mostly agrees with
αk/N,0. In this case, α0,0 and α0,2 agree everywhere except the first two 1/N ’s in time.

Figure 4: This example is to contrast Figure 3. If the second parameter in αk/N,∗ is large,
then αk/N,∗ mostly agrees with α(k+1)/N,0. In this case, α1,0 and α0,10 agree everywhere except
the last 1/N in time.

in [(l − 1)/N, (l + 1)/N ]. To evaluate Φ along a path, we can choose any partition we like
satisfying condition (∗). If we choose the partition below

0,
1

N
, . . . ,

l − 1

N
,
l + 1

N
,
l + 2

N
, . . . , 1

by choice of N , this satisfies (∗) on both paths αk,l and αk,l+1. Moreover, since this parti-
tion has been chosen is in such a way that αk,l and αk,l+1 are identical at all point of the
partition, by definition of Φ along a path, namely Equation 8, Φ is the same for the paths
αk,l and αk,l+1. A similar argument shows that Φ is the same along αk,N and αk+1,0. This
will show that Φ(g) is the same for each path from β = h0,0 to hN−1,N , and applying the
same argument, yields the same value of Φ on γ. Consequently we have independence of
homotopy of path. Since G is simply connected, this means Φ is well defined.

(v). The map lifts φ: That Φ is a homomorphism is indeed relatively straight forward.
One can pick a g and an h and paths α and β connecting them. From that one constructs
a new path γ to gh by defining γ as α in double time, then gβ in shifted double time.
The details are left to the reader and can be verified in a straight forward manner using a
combination of partitions to satisfy the (∗) condition.
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The very last part is to show that the differential of Φ is as claimed. Note that

dΦe(X) =
d

dt

∣∣∣∣
t=0

Φ(exp(tX)) =
d

dt

∣∣∣∣
t=0

exp(tφ(X)) = φ(X)

where the second equality follows simply from definition of Φ, as for small enough t, exp(tX) ∈
exp(U). This completes the proof of Lie’s Third Theorem.

3 Derivative of Exponential Map

Most proofs of the BCH formula that I’ve seen endeavor to calculate the derivative of the
exponential map exp : g −→ G. Finding the derivative at the identity is a relatively straight
forward task, whereas finding the derivative at an arbitrary point X ∈ g becomes quite
computationally taxing. While the general case is certainly more desirable, I don’t think it
is necessarily as enlightening as first working the case of matrix groups. The advantage of
working in the case of matrix groups provides grounds in which we can multiply elements
of the lie group by elements of the tangent space as per consequence of the fact that if G
is a matrix group, namely a closed subgroup of GL(n,R), then its lie algebra g naturally
identifies with a lie subalgebra of the n × n matrices, which we denote by gl(n,R). This
identification is a consequence of embedding G ≤ GL(n,R) where the topology of GL(n,R)
is inherited from the euclidean space, Rn×n.

For example let X ∈ g. For any g ∈ G, consider the map Lg : G −→ G and its derivative at
the identity d(Lg)e : g −→ g. As previously mentioned, the lie algebra g sits inside the lie
algebra of gl(n,R). We claim that d(Lg)e(X) = gX.

Let X be represented by the one parameter subgroup expX : R −→ G where expX(t) =
exp(tX). Certainly (Lg ◦ expX) : R −→ G ⊂ Rn×n, as per consequence

d(Lg)e(X) = d(Lg ◦ expX)0

(
d

dt

∣∣∣∣
t=0

)
=

d

dt

∣∣∣∣
t=0

(Lg ◦ expX)(t) = g
d

dt

∣∣∣∣
t=0

exp(tX) = gX (9)

There are some subtitles in Equation 9. In particular, the third equality follows from the fact
that that G ⊂ Rn×n, whereby we may identify tangent space of G at the identity, TInG, and
consequently the lie algebra itself, as a subspace of TInRn×n where In is the n × n-identity
matrix. Because Rn×n is a vector space, its tangent spaces at any point enjoys a canonical
isomorphism between the tangent space and the vector space itself. Specifically, if p ∈ V
where V is some vector space, then TpV is canonically isomorphic as a vector space to V .

This is absurdly false for general manifolds, and the fact that we may make this identi-
fication provides us the privilege of being able to take elements in the group G and multiply
them by elements of the lie algebra g. For example, the adjoint representation of a matrix
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group G ≤ GL(n,R) is given by what one would naively hope to be true, namely

Adg(X) = d(Lg ◦Rg−1)e(X) = d(Lg ◦Rg−1 ◦ expX)0

(
d

dt

∣∣∣∣
t=0

)
(10)

=
d

dt

∣∣∣∣
t=0

g exp(tX)g−1 = gXg−1

As mentioned previously the inability to do this in the general context must be taken into
account. From what I have seen, this tends to involve woefully complex derivatives. In
fact, I have another bit of notes entirely dedicated to a single formula found in Duistermaat
and Kolk [1] which has a proof of the BCH formula in full generality. This particular proof
though implements a variational formula for a derivative of a family of vector fields which is
far from intuitive, and warrants quite a bit of explanation.

All that said, we now proceed to the proof of the BCH formula in the context of matrix
lie groups. As advertised previously, this will involve us taking the derivative of the expo-
nential map at a point X ∈ g. In particular we will look at the expression,

d

dt

∣∣∣∣
t=0

eX+tY

where X, Y ∈ g. One would ideally like this to be equal to eXY , but this is unfortunately
far from the case in general, and such a statement assumes that [X, Y ] = 0.

Before proceeding we need to introduce a function

1− e−z

z
=

1− (1− z + z2/2!− . . .)
z

which is analytic on the complex plane. In fact, its power series is given by

1− e−z

z
=
∞∑
k=0

(−1)k
zk

(k + 1)!
= 1− z/2! + z2/3!− . . .

Since this series converges everywhere on C, one may define for any linear transformation A
on a vector space V the linear transformation

1− e−A

A
:=

∞∑
k=0

(−1)k
Ak

(k + 1)!
= 1− A/2! + A2/3!− . . . (11)

where 1 in the above equations denotes the identity map on V −→ V . Since the norm ||A||
is finite, the series above indeed converges, and thus the definition in Equation 11 makes
sense.

It is unfortunate that I have no better explanation of why we would consider this func-
tion apart from its implementation in the calculations below. Specifically, I mean that I
don’t see any reason why intuitively one would even begin to consider the above function
in trying to take the derivative of the exponential map. That said, perhaps it will become
more clear in the proof below, and consequently, I will try to be detailed and thorough so as
to attempt to motivate such considerations.
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Theorem 4. (Hall Theorem 3.5) Let X and Y be n× n complex matrices, then

d

dt

∣∣∣∣
t=0

eX+tY = eX
(

1− e−adX

adX
(Y )

)
(12)

= eX
(
Y − [X, Y ]

2!
+

[X, [X, Y ]]

3!
− . . .

)
More generally if X(t) is a smooth path of matrices, then

d

dt

∣∣∣∣
t=s

eX(t) = eX(s)

(
1− e−adX(s)

adX(s)

(
dX

dt
(s)

))
(13)

It is worth noting that Equation 13 follows immediately from Equation 12. One may
verify this by considering the smooth map Y (t) := X(s + t). Because Y (t) is smooth, we
may locally write

Y (t) = Y (0) + tY ′(0) + t2Z(t) = X(s) + tX ′(s) + t2Z(t)

where Z(t) is some smooth path of matrices. The equation above for Y (t) holds for some
small enough neighborhood about t = 0. Now if we consider exp(Y (t)) as a composition of
functions Y : (−ε, ε) −→ g and exp : g −→ G, then the chain rules yields that

d

dt

∣∣∣∣
t=s

eX(t) =
d

dt

∣∣∣∣
t=0

eY (t) = d(exp)X(s) (X ′(s)) =
d

dt

∣∣∣∣
t=0

eX(s)+tX′(s)

= eX(s)

(
1− e−adX(s)

adX(s)

(X ′(s))

)
thus providing Equation 13.

The formula for the derivative of the exponential map as provided below follows Tuynman [5].

For any n× n matrices, X, Y , define

∆(X, Y ) =
d

dt

∣∣∣∣
t=0

eX+tY

Since the exponential map is smooth, ∆ is a linear map in Y for each fixed X, as it is the
directional derivative. Now for each positive integer m ∈ N,

exp(X + tY ) =

(
exp

(
X

m
+ t

Y

m

))m
whereby we may differentiate and apply the product rule. Note we will obtain m-summands,
each consisting of m-factors, (m− 1) of which are the evaluation of exp(X/m+ t(Y/m)) at
t = 0, whereas one factor is differentiated at t = 0. Bear in mind we must preserve the order,
as we lack commutativity.

∆(X, Y ) =
m−1∑
k=0

exp

(
X

m

)m−k−1(
d

dt

∣∣∣∣
t=0

exp

(
X

m
+ t

Y

m

))
exp

(
X

m

)k
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Factor out the (m − 1) terms of exp(X/m) in the expression exp(X/m)m−k−1 and rewrite
the derivative of exp(X/m+ t(Y/m)) in the notation as ∆(X/m, Y/m). This yields

∆(X, Y ) = exp

(
m− 1

m
X

)m−1∑
k=0

exp

(
X

m

)−k
∆

(
X

m
,
Y

m

)
exp

(
X

m

)k
Note each summand is in fact of the form of the Adjoint representation. Explicitly,

exp

(
X

m

)−k
∆

(
X

m
,
Y

m

)
exp

(
X

m

)k
= Adkexp(−X/m)

(
∆

(
X

m
,
Y

m

))
= exp

(
adk−X/m

(
∆

(
X

m
,
Y

m

)))
where the last equality follows from the fact that Adexp(X) = exp ◦adX for all X ∈ g. As
one last simplification we factor out 1/m from the Y/m in the argument of ∆ and rewrite
ad−X/m as −adX/m to yield the equality

∆(X, Y ) = exp

(
m− 1

m
X

)
1

m

m−1∑
k=0

exp

(
−adX

m

)k (
∆

(
X

m
,Y

))
Note the left hand side is independent of m, and thus we may take the limit as m → ∞.
There are two terms whose limits are relatively clear. Specifically,

lim
m→∞

exp

(
m− 1

m
X

)
= exp(X) and lim

m→∞
∆

(
X

m
,Y

)
= ∆ (0, Y ) = Y (14)

where ∆ (0, Y ) = Y as ∆(0, Y ) is the derivative of the exponential map at X = 0.

The remaining term is given by,

lim
m→∞

1

m

m−1∑
k=0

exp

(
−adX

m

)k
(15)

Hall provides some pretty neat reasoning as to where this series should converge. Pretend
momentarily that adX is simply some numeric quantity. If so, then the summation in Equa-
tion 15 is a geometric series. For sufficiently large m, the quantity −adX/m < 1 so that we
may say

1

m

m−1∑
k=0

exp

(
−adX

m

)k
=

1

m

1− exp(−adX)

1− exp(−adX/m)
−→ 1− exp(−adX)

adX

We reason that a similar statement should hold in our case where adX is a linear operator
and not a number. That said, we begin by writing exp(−adX/m)k as exp(−kadX/m) and
expanding the exponential term within the sum in Equation 15.

1

m

m−1∑
k=0

exp

(
− k
m

adX

)
=
∞∑
i=0

1

m

m−1∑
k=0

1

i!

(
− k
m

adX

)i
=
∞∑
i=0

(
1

m

m−1∑
k=0

(
k

m

)i)
(−1)i

i!
adiX

12



The term in the parentheses immediately to the right of the summation is the riemann sum
approximation of

∫ 1

0
xi dx which in limit is 1/(i+1). Ideally one would like to bring the limit

m → ∞ inside the summation
∑∞

i=0, but one must always be wary of interchanging limits.
That said, note we have the following bound∣∣∣∣∣

∣∣∣∣∣ 1

m

m−1∑
k=0

(
k

m

)i
(−1)i

i!
adiX

∣∣∣∣∣
∣∣∣∣∣ ≤ 1

i+ 1

1

i!
||adX ||i (16)

which follows as the riemann sum is this particular case is strictly increasing towards its
limit 1/(i+ 1). If one makes the identification of adX with an n× n matrix, then each term
in the matrix associated to adX is bounded above the ||adX ||. Since the limit as i → ∞
of the right-hand side of Equation 16 converges, one may apply the dominated convergence
theorem to interchange the limit m→∞ and

∑∞
i=0. This yields

lim
m→∞

1

m

m−1∑
k=0

exp (−kadX/m) =
∞∑
i=0

(−1)i

(i+ 1)!
adiX =

1− e−adX

adX
(17)

where the last equality follows by Equation 11. Combining Equation 14 and Equation 17
provide us

d

dt

∣∣∣∣
t=0

eX+tY = eX
(

1− e−adX

adX
(Y )

)

4 Proof of the Integral BCH Formula

In this section we provide one incarnation of the BCH Formula, namely an integral formula.
Similar to the methods employed Equation 11, for a fixed linear operator A : V −→ V on
some vector space V , let

g(A) =
∞∑
m=0

am(A− 1)m where g(z) =
log(z)

1− 1
z

=
∞∑
m=0

am(z − 1)m

where we interpret the 1 in the equation for g(A) as the identity map on V . The integral
formulation of the BCH says for sufficiently small enough X, Y ∈ g,

log(eXeY ) = X +

∫ 1

0

g
(
eadXetadY

)
(Y ) dt

To begin, let us define
Z(t) = log(eXetY )

If X and Y are sufficiently small, then Z(t) may be defined for all 0 ≤ t ≤ 1. We wish to
compute Z(1). By definition,

eZ(t) = eXetY (18)

13



not to be confused with eX+tY which was analyzed in Section 3. Taking the derivative of
the above is a simple task relatively speaking and was addressed in Equation 9. In fact, we
have the equality,

e−Z(t) d

dt
eZ(t) =

(
eXetY

)−1
eXetY Y = Y (19)

On the other hand, Equation 13 provides us with

e−Z(t) d

dt
eZ(t) =

(
1− e−adZ(t)

adZ(t)

)(
dZ

dt

)
(20)

Equating Equation 19 and Equation 20 yields(
1− e−adZ(t)

adZ(t)

)(
dZ

dt

)
= Y

Provided one chooses X and Y sufficiently small, Z(t) will also be small so that (1 −
e−adZ(t))/adZ(t) will be close to the identity, and thus invertible. Consequently, we have

dZ

dt
=

(
1− e−adZ(t)

adZ(t)

)−1

(Y ) (21)

Exponentiating Z(t) as was done in Equation 18, and applying the Adjoint representation
yields

AdeZ(t) = AdeX ◦ AdetY =⇒ eadZ(t) = eadXetadY (22)

which after taking logarithms yields

adZ(t) = log
(
eadXetadY

)
(23)

Substituting both Equation 22 and Equation 23 into Equation 21 yields

dZ

dt
=

(
1−

(
eadXetadY

)−1

log (eadXetadY )

)−1

(Y )

We may rewrite g(z) as in Equation 17 as

g(z) =

(
1− z−1

log(z)

)−1

and as per consequence, considering the composition of g(z) with the linear operator eadXetadY

using the same arguments for convergence as in Equation 11.

dZ

dt
= g

(
eadXetadY

)
(Y )

Integrating the above from 0 to 1 and recalling that Z(0) = X by definition yields the
integral formulation of the BCH

Z(1) = log
(
eXeY

)
= X +

∫ 1

0

g
(
eadXetadY

)
(Y ) dt where g(z) =

log(z)

1− 1
z

(24)
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5 The Series BCH Formula

With the integral formulation of the BCH formula as in Equation 24, we may use taylor se-
ries approximations to obtain a series expansion of the BCH integral formula. That said, it
worth noting at this point in its current incarnation, one should be able to see that Equation
24 provides us with ample evidence that the logarithm of the product may be written as a
summation of terms involving X, Y , and their brackets, as this is true for both exp(adX)
and exp(tadY ), so by linearity of the infinite summation of g, it will be true for the integral
as well. That said it is nevertheless insightful and somewhat awe evoking to behold the series
expansion.

Recall that g(z) as in Equation 24 is given by

g(z) =
z log(z)

z − 1
=

(1 + (z − 1))
(

(z − 1)− (z−1)2

2
+ (z−1)3

3
− . . .

)
(z − 1)

= (1 + (z − 1))

(
1− (z − 1)

2
+

(z − 1)2

3
+ . . .

)
Multiplying and combining like terms provides

g(z) = 1 +
1

2
(z − 1)− 1

6
(z − 1)2 + . . .

For those interested in obtaining more terms in the series expansion, a closed form expression
for g(z) is given by

g(z) = 1 +
∞∑
m=1

(−1)m+1

m(m+ 1)
(z − 1)m

As we intend to compose eadXetadY in g(z) expanded about z = 1, we observe that

eadXetadY − 1 (25)

=

(
1 + adX +

1

2
ad2

X + . . .

)(
1 + tadY +

t2

2
ad2

Y + . . .

)
− 1

= adX + tadY + tadXadY +
1

2
ad2

X +
t2

2
ad2

Y + . . .

Note here that the above expansion contains no zero-th order identity term, simply expres-
sions involving adjoint operations or higher powers of them. As per consequence each power
of Equation 25 will also enjoy the same property. Bearing this in mind we may evaluate

g
(
eadXetadY

)
= 1 +

1

2

(
adX + tadY + tadXadY +

1

2
ad2

X +
t2

2
ad2

Y + . . .

)
− 1

6
(adX + tadY + . . .)2 + . . .

= 1 +
1

2
adX +

t

2
adY +

t

2
adXadY +

1

4
ad2

X +
t2

4
ad2

Y

− 1

6

(
ad2

X + t2ad2
Y + tadXadY + tadY adX

)
+ higher order terms
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Next we apply the above linear transformation to the vector Y and integrate from t = 0 to
t = 1, keeping in mind that terms ending in adY vanish when evaluated at Y . Adding this
result to X yields Equation 24 as

log
(
eXeY

)
= X +

∫ 1

0

(
Y +

1

2
[X, Y ] +

1

4
[X, [X, Y ]]− 1

6
[X, [X, Y ]]− t

6
[Y, [X, Y ]]

)
dt+ . . .

= X + Y +
1

2
[X, Y ] +

1

12
[X, [X, Y ]]− 1

12
[Y, [X, Y ]] + . . .

which is stated in Equation 1. This complete the proof of the BCH series formula.

6 Concluding Remarks

Some final thoughts regarding the BCH formula, in practice it’s nearly impossible to calcu-
late in full generality. The above sections are perhaps daunting and fraught with both long
calculations and possibly typos, though I hope I’ve minimized the latter. That said, it is
well advised to grapple with some of these in specific cases. Two non-trivial cases that are
well documented are the heisenberg group and the orientation preserving affine group of the
reals. As both are simply connected, Lie’s Third Theorem says their lie group structure is
just as good as me telling you their lie algebra. I recommend checking this out.

For the heisenberg group let g be generated by X, Y and Z subject to the relations [X, Y ] = Z
and all other generating brackets are trivial. On the other hand, the orientation preserving
affine group over R has a lie algebra generated by X and Y subject to [X, Y ] = X.

For those a bit more ambitious try and calculate the exponential of the lie group E(1, 1)
whose lie algebra is generated by X, Y and Z subject to [Z,X] = X and [Z, Y ] = −Y
and [X, Y ] = 0. This group is realized as the identity component of orientation preserving
isometries of minkowski plane, namely R2 equipped with the non-riemannian inner product
(x, y) = x1y1−x2y2. Thankfully a lot of these three-dimensional lie groups provide excellent
examples and are not too computationally intensive.
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