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Summary

Here I provide a proof of a very interesting formula I stumbled upon by chance in
Duistermaat and Kolk. The context here is the following. Let Vs be a smooth path of
vector fields on a manifold M . Let Φt

s(x) denote the flow of Vs at a point p ∈M . We
then have the following equality

∂Φt
�(x)

∂s
:= d

(
Φt
�(x)

)( ∂

∂s

)
=

∫ t

0
d
(
Φt−u
s

)
Φu

s (x)

(
∂V�

∂s
(Φu

s (x))

)
du (1)

I’ve introduced squares in an attempt to draw the reader’s eye towards what variables
are being differentiated in contrast to those that are fixed. This is a weird equation
I’ve never seen in any other book about smooth manifolds, and I think it would be
shame for this gem not to get the attention it deserves. These notes largely follow the
proof as found in Duistermaat and Kolk, but perhaps with a bit more detail for those
not used to taking derivatives on manifolds.
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1 Introduction

Before proceeding to the proof of this, I should mention several things. The statement
above is purely local, in the sense that s and t are certainly not defined for all time. In
fact, we assume that s and t are so small that for all (s, t) ∈ (−ε, ε)2, Φt

s(x) is defined and
contained in a single coordinate chart (U, φ) for the sake of ease of calculations. Moreover,
Φ : (−ε, ε)2 ×M −→ M is smooth. This is a consequence of the fact that Φ is the flow of
the single vector field X = Vs defined on (−ε, ε)×M .

Keeping the above in mind, let us first inspect some of the terms in Equation 1. The
left hand side is the derivative of the time t-flows at x the direction transverse to the family
of time t-flows. That said, for example, if t = 0, we expect the derivative to be zero, as each
Φ0

s(x) = id(x) = x for all s, and thus is constant.

Inside the integral on the right hand side of Equation 1, we have the spatial differential
of Φt−u

s evaluated at Φu
s (x). This is a linear map from TΦu

s (x)M to TΦt
s(x), as s is fixed in this

equation, so Φa
s ◦ Φb

s = Φa+b
s .

Finally, ∂V�/∂s evaluated at Φu
s (x) which is perhaps more recognizable as

∂V�
∂s

(Φu
s (x)) = d (V�)Φu

s (x)

(
∂

∂s

)
(2)

Recall, V (s) is a smooth path of vector fields on M , and thus for each point p ∈ M , we
have a smooth path in TxM given by V (s)|x. Because V (s)|x ∈ TxM for all s ∈ (−ε, ε), its
differential as given in Equation 2 is naturally identified as an element of TΦu

s (x)M . As per
consequence, we may apply the differential d (Φt−u

s )Φu
s (x) to the vector in Equation 2.

After applying the differential, the quantity d (Φt−u
s )Φu

s (x)

(
∂V�
∂s

(Φu
s (x))

)
will land in TΦt

s(x)M
for all u ∈ [0, t]. As per consequence, we may integrate it, and we claim the integral satisfies
Equation 1.

2 Calculations

As a preliminary step, since we assumed Φ�
�(x) to be contained in a single coordinate chart

(U, φ) for all (s, t) ∈ (−ε, ε)2, we may begin by making the identification of (−ε, ε)× U with
the open subset (−ε, ε)× φ(U) ⊂ R× Rn.

With this identification, we begin by noting that since Φt
s(x) is the flow at x corresponding

to the vector field Vs. As per consequence, it satisfies the following differential equation

∂Φt
s(x)

∂t
= Vs

(
Φt

s(x)
)

where Φ0
s(x) = x (3)

which has the corresponding integral equation

Φt
s(x) = x+

∫ t

0

Vs (Φu
s (x)) du (4)
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Differentiating Equation 4 with respect to the transverse parameter s, yields

∂Φt
s(x)

∂s
=

∫ t

0

∂

∂s
Vs (Φu

s (x)) du =

∫ t

0

∂

∂s
V (s,Φu

s (x)) du

=

∫ t

0

∂V

∂s
(s,Φu

s (x)) du+

∫ t

0

∂V

∂x
(s,Φu

s (x)) ◦ d (Φu
�(x))

(
∂

∂s

)
du

=

∫ t

0

∂V

∂s
(s,Φu

s (x)) du+

∫ t

0

∂V

∂x
(s,Φu

s (x))
Φu

s (x)

∂s
du (5)

It is worth noting that the two integrals in the last line of Equation 5 are, or at least should

be, vector quantities as ∂Φt
s(x)
∂s

is. Certainly the expression ∂V/∂s is a vector, whereas ∂V/∂x
is part of the total derivative of V : (−ε, ε)×φ(U) −→ Rn, and in fact is the spatial derivative
of V , and consequently may be identified with a matrix. On the other hand, the differential
d (Φu

�(x)) (∂/∂s) is a vector quantity, so that spatial derivative applied to this vector yields
a vector as desired.

Differentiating Equation 5 with respect to t provides the equality

∂

∂t

∂Φt
s(x)

∂s
=
∂V

∂s

(
s,Φt

s(x)
)

+
∂V

∂x

(
s,Φt

s(x)
) Φt

s(x)

∂s
where

∂Φ0
s(x)

∂s
= 0 (6)

On the other hand, if we differentiate Equation 3 with respect to the spatial component x,
we obtain

∂

∂x

∂Φt
s(x)

∂t
=

∂

∂x
V
(
s,Φt

s(x)
)

=
∂V

∂x

(
s,Φt

s(x)
)
◦ d
(
Φt

s(�)
)

(7)

∂

∂t

∂Φt
s(x)

∂x
=
∂V

∂x

(
s,Φt

s(x)
) ∂Φt

s(x)

∂x

where the second line of equality follows from the fact that the partial derivatives of t and
x commute. Note that ∂Φt

s/∂x satisfies the homogenous linear differential equation

∂

∂t
♥ =

∂V

∂x

(
s,Φt

s(x)
)
♥ (8)

where Equation 8 is in fact the homogenous part of Equation 6. From here we apply the
method of variation of parameters to ∂Φt

s(x)/∂s and equate the result to ∂Φt
s(x)/∂s.

To begin let v(t) denote a smooth vector quantity. If we want (∂Φt
s(x)/∂x) v(t) to be the

solution to Equation 6, then

∂Φ0
s(x)

∂x
v(0) = Inv(0) = 0 =⇒ v(0) = 0 (9)

where the second equality follows as Φ0
s(x) = x for all s ∈ (−ε, ε). Now differentiating the

product and subjecting it to the constraints as defined by Equation 6,

∂

∂t

(
∂Φt

s(x)

∂x
v(t)

)
=

(
∂

∂t

∂Φt
s(x)

∂x

)
v(t) +

∂Φt
s(x)

∂x

dv

dt
(t) (10)

=
∂V

∂s

(
s,Φt

s(x)
)

+
∂V

∂x

(
s,Φt

s(x)
)(∂Φt

s(x)

∂x
v(t)

)
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From which we substitute Equation 7 to yield

∂V

∂x

(
s,Φt

s(x)
) ∂Φt

s(x)

∂x
v(t) +

∂Φt
s(x)

∂x

dv

dt
(t) =

∂V

∂s

(
s,Φt

s(x)
)

+
∂V

∂x

(
s,Φt

s(x)
)(∂Φt

s(x)

∂x
v(t)

)
This necessitates that

∂Φt
s(x)

∂x

dv

dt
(t) =

∂V

∂s

(
s,Φt

s(x)
)

(11)

Since

Φs (−t,Φs (t, x)) = x =⇒ ∂Φs

∂x
(−t,Φs(t, x)) ◦ ∂Φs

∂x
(t, x) = id

Right inverting yields

∂Φt
s(x)

∂x

−1

=
∂Φs

∂x
(t, x)−1 =

∂Φ−t
s

∂x
(Φs(t, x)) (12)

Combining the results of Equation 11 and Equation 12 implies that

dv

dt
(t) =

∂Φt
s(x)

∂x

−1
∂V

∂s

(
s,Φt

s(x)
)

=
∂Φ−t

s

∂x
(Φs(t, x))

∂V

∂s

(
s,Φt

s(x)
)

Integrating and recalling the condition as imposed in Equation 9

v(t) =

∫ t

0

∂Φ−u
s

∂x
(Φs(u, x))

∂V

∂s
(s,Φu

s (x)) du

Returning to the original form of the solution,

∂Φt
s(x)

∂x
v(t) =

∂Φt
s(x)

∂x

∫ t

0

∂Φ−u
s

∂x
(Φs(u, x))

∂V

∂s
(s,Φu

s (x)) du

=

∫ t

0

∂Φt−u
s

∂x
(Φs(u, x))

∂V

∂s
(s,Φu

s (x)) du

By uniqueness of solutions, we have the desired equality

∂Φt
s(x)

∂s
=

∫ t

0

∂Φt−u
s

∂x
(Φs(u, x))

∂V

∂s
(s,Φu

s (x)) du

which the coordinate expression of

∂Φt
s(x)

∂s
=

∫ t

0

d
(
Φt−u

s

)
Φu

s (x)

(
∂Vs
∂s

(Φu
s (x))

)
du

which is Equation 1 where the variables have not been suppressed by squares.
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3 Conclusion

Equation 1 finds it use in the theory of differential equations, in particular, if one has a family
of time dependent vector fields, Equation 1 can be used to calculate derivatives transverse
to the spatial direction. For example, as done in Duistermaat and Kolk [?], Equation 1 is
used to calculate the derivative of the exponential map of a lie group. In particular, if one
fixes two elements of the lie algebra X, Y ∈ g, one can consider the family of vector fields,
X + sY to show the derivative of exp : g→ G is given by

dX exp = d(LexpX)e

(∫ 1

0

exp−sadX ds

)
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