An Interesting Variational Equation
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Summary

Here I provide a proof of a very interesting formula I stumbled upon by chance in
Duistermaat and Kolk. The context here is the following. Let Vs be a smooth path of
vector fields on a manifold M. Let ®(z) denote the flow of Vy at a point p € M. We
then have the following equality
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I’ve introduced squares in an attempt to draw the reader’s eye towards what variables
are being differentiated in contrast to those that are fixed. This is a weird equation
I’ve never seen in any other book about smooth manifolds, and I think it would be
shame for this gem not to get the attention it deserves. These notes largely follow the
proof as found in Duistermaat and Kolk, but perhaps with a bit more detail for those
not used to taking derivatives on manifolds.



1 Introduction

Before proceeding to the proof of this, I should mention several things. The statement
above is purely local, in the sense that s and ¢ are certainly not defined for all time. In
fact, we assume that s and t are so small that for all (s,t) € (—¢,¢)?, ®L(x) is defined and
contained in a single coordinate chart (U, ¢) for the sake of ease of calculations. Moreover,
® : (—€,€)> x M — M is smooth. This is a consequence of the fact that @ is the flow of
the single vector field X = V; defined on (—e¢,€) x M.

Keeping the above in mind, let us first inspect some of the terms in Equation [I The
left hand side is the derivative of the time t-flows at x the direction transverse to the family
of time t-flows. That said, for example, if t = 0, we expect the derivative to be zero, as each
®(x) = id(x) = x for all s, and thus is constant.

Inside the integral on the right hand side of Equation [I] we have the spatial differential
of &L~ evaluated at ®%(x). This is a linear map from Tou(w)M to Tet(y), as s is fixed in this
equation, so ®% o b = patt,

Finally, 0V5/0s evaluated at ®%(x) which is perhaps more recognizable as
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Recall, V(s) is a smooth path of vector fields on M, and thus for each point p € M, we
have a smooth path in T, M given by V(s)|,. Because V(s)|, € T, M for all s € (—¢,¢), its
differential as given in Equation [2] is naturally identified as an element of Tu(,)M. As per
consequence, we may apply the differential d (®, ) u(z) 1O the vector in Equation .

After applying the differential, the quantity d (@’;f“)q)u(m) (% (@Z(m))) will land in Tt () M
for all u € [0,t]. As per consequence, we may integrate it, and we claim the integral satisfies
Equation [I}

2 Calculations
As a preliminary step, since we assumed ®5(z) to be contained in a single coordinate chart
(U, ¢) for all (s,t) € (—¢,€)?, we may begin by making the identification of (—¢, €) x U with

the open subset (—¢,€) x ¢(U) C R x R™.

With this identification, we begin by noting that since ®%(x) is the flow at x corresponding
to the vector field V,. As per consequence, it satisfies the following differential equation
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which has the corresponding integral equation
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Differentiating Equation M with respect to the transverse parameter s, yields
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It is worth noting that the two integrals in the last line of Equation [5] are, or at least should

be, vector quantities as ‘%a( is. Certainly the expression 9V'/0s is a vector, whereas 0V /0z
is part of the total derivative of V' : (—¢, €) X ¢(U) — R™, and in fact is the spatial derivative
of V', and consequently may be identified with a matrix. On the other hand, the differential
d (®Y(z)) (0/0s) is a vector quantity, so that spatial derivative applied to this vector yields

a vector as desired.

Differentiating Equation [f] with respect to ¢ provides the equality
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On the other hand, if we differentiate Equation [3| with respect to the spatial component =,
we obtain
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where the second line of equality follows from the fact that the partial derivatives of ¢ and
x commute. Note that OP%/0x satisfies the homogenous linear differential equation
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where Equation [§] is in fact the homogenous part of Equation [ From here we apply the

method of variation of parameters to 0®%(x)/0s and equate the result to 0PL(x)/0s.

To begin let v(t) denote a smooth vector quantity. If we want (9®%(x)/0x)v(t) to be the
solution to Equation [6] then
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where the second equality follows as ®%(z) = x for all s € (—¢,¢€). Now differentiating the
product and subjecting it to the constraints as defined by Equation [6]

d (0PL(x) 0 09t (x) 0PL(x) dv
7 (5 0) = (57522 v+ S50 a

v, ov ., 0P ()
= (o) + 5 (0t (P

v(0) = Lw(0) = 0 = v(0) =0 9)




From which we substitute Equation [7] to yield
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Since
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Right inverting yields
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Combining the results of Equation [11] and Equation 12| implies that
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Integrating and recalling the condition as imposed in Equation [9]
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Returning to the original form of the solution,
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By uniqueness of solutions, we have the desired equality
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which the coordinate expression of
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which is Equation |[1) where the variables have not been suppressed by squares.



3 Conclusion

Equation [1|finds it use in the theory of differential equations, in particular, if one has a family
of time dependent vector fields, Equation [I] can be used to calculate derivatives transverse
to the spatial direction. For example, as done in Duistermaat and Kolk [?], Equation (1] is
used to calculate the derivative of the exponential map of a lie group. In particular, if one
fixes two elements of the lie algebra X,Y € g, one can consider the family of vector fields,
X + sY to show the derivative of exp : g — G is given by

1
dx exp = d(Lexp x)e (/ expsadx ds)
0
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