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Abstract

In this paper, we examine the groups G2 and G3 associated to the 2× 2
and 3× 3 Rubik’s cubes. We express G2 and G3 in terms of familiar groups
and exhibit a split homomorphism ψ : G3 −→ G2 to prove that G2 embeds
inside G3 as a subgroup. In addition, we prove several results bounding
the dimensions of minimal faithful representations of finite abelian groups
split by some complementary subgroup. We then employ these results to
determine the minimal faithful dimensions of G2 and G3 over both C and
R. We find that G2 has minimal dimension 8 over C and 16 over R, and
that G3 has minimal dimension 20 over C and 28 over R.
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1 Introduction

The Rubik’s cube is an excellent illustration of the principles of finite group theory.
It offers clear, tangible examples of concepts such as normal subgroups and group
homomorphisms, as well as a compelling motivation for tools like the semi-direct
product. Moreover, it is complex enough to resist brute computation, so that we
are best equipped to understand it through its underlying algebraic structure.

In the same vein, the Rubik’s cube provides a clear exposition of the represen-
tation theory of finite groups. Despite its apparent complexity, the cube admits
natural, low-dimensional representations that reflect both the algebraic structure
of the cube group and the geometry of the cube itself. The proof that these rep-
resentations have minimal dimension demonstrates many foundational techniques
in representation theory, and we will find that it generalizes easily to a large class
of related groups.

In this paper, we will investigate the groups G2 and G3 associated to the 2×2 and
3× 3 Rubik’s cubes. We will study G2 through the homomorphism ϕ : G2 −→ S8

induced by suppressing the colors on the 2×2 cube, and we will study G3 through
the homomorphism ψ : G3 −→ G2 induced by suppressing the edge pieces of the
3 × 3 cube. We will then further decompose the kernels of ϕ and ψ, so that G2

and G3 can be expressed entirely in terms of familiar groups. In Theorem 3.10 we
will prove that ψ is split, so that G2 can be realized as a subgroup of G3.

In addition, we will consider faithful representations of finite abelian groups and
prove that the minimal dimension of these representations over both the complex
and real numbers is related to the invariant factor decomposition of the group as
in Theorem 4.2. We then consider split extensions by finite abelian groups whose
splitting homomorphism is faithful. In Theorems 4.6 and 4.4, we relate the mini-
mal dimension of faithful representations over both the real and complex numbers
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to the minimal permutation degree of the complementary subgroup.

We conclude by using our results to calculate the minimal dimension of faith-
ful representations of both G2 and G3 over C and R. We will show that any
faithful representation of G2 must have dimension at least 8 over C and 16 over
R, and we will construct representations that achieve these bounds. We will then
repeat this program for G3, and we will find that its faithful representations have
minimal dimension 20 over C and 28 over R.

The paper is organized as follows. In Section 2, we determine the group structure
of G2. In Section 3, we do the same for G3. In Section 4, we establish some
bounds on the minimal faithful dimensions of complex and real representations of
both finite abelian groups and split extensions by them. In Section 5, we consider
the faithful representations of G2 and G3 respectively.

Acknowledgements

Both authors extend their gratitude to Brown University’s Summer/Semester
Projects for Research, Internship, and Teaching (SPRINT) and Undergraduate
Teaching and Research Awards (UTRA) for both their financial support and ded-
ication to collaboration amongst junior faculty and undergraduates. The first au-
thor would like to thank Dani Kaufman for helping spark interest in this problem
through her deep understanding of the group structure of the Rubik’s cube. He
would also like to thank both Philip Eberhart and Myles Miller for their insights
into the puzzle, particularly Myles for showing him the ‘bird configuration’ of the
Rubik’s Pyramorphix. The second author thanks his algebra teachers, Isabel Vogt
and Wei Zhining, for their instruction and guidance over the course of his under-
graduate education. He also thanks his parents for their constant encouragement,
their celebration of curiosity, and their steadfast commitment to his studies.

2 Group Structure of the 2× 2 Rubik’s Cube

In this section, we determine the group structure of G2 through the map ϕ :
G2 −→ S8 recording permutations of the corner pieces. We prove that this map is
surjective in Proposition 2.1. Next, we turn to the kernel K of ϕ, or the subgroup
of Z8

3 describing rotations of the corners in place. In order to determine K, we
introduce the concept of local orientation and prove that it induces a Z3 invariant
preserved by G2. We then prove in Proposition 2.5 that K is maximal under this
invariant. We close by showing that the sequence K −→ G2 −→ S8 is split in
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Proposition 2.6, and by enumerating the normal subgroups of G2 in Propositions
2.7–2.9.

2.1 Setup of the Problem

Figure 1: The 2× 2× 2 Rubik’s cube; generators of the 2× 2 cube group G2.

The 2 × 2 × 2 Rubik’s cube, here also called “the 2 × 2 cube”, is a cube sub-
divided into eight smaller pieces called “cubelets”. The six faces of the cube are
each covered by four stickers of the same color, one for each cubelet on that face.
(See Figure 1).

Each face can be rotated in 90-degree increments while the opposite face is held
fixed, and these rotations induce permutations of the stickers on the cube. The
group associated to the 2 × 2 cube, called G2, can be realized through these per-
mutations. It is generated by six elements, as shown in Figure 1:

- u2: rotate the top (white) face 90 degrees clockwise

- d2: rotate the bottom (yellow) face 90 degrees clockwise

- f2: rotate the front (red) face 90 degrees clockwise

- b2: rotate the back (orange) face 90 degrees clockwise

- l2: rotate the left (green) face 90 degrees clockwise

- r2: rotate the right (blue) face 90 degrees clockwise
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By convention, these rotations are clockwise for an observer looking at the
relevant face outside the cube. The colors associated with each face are for the
cube in its solved state. Unless we are also discussing the 3× 3 cube group G3, we
will suppress the subscripts on these generators.

2.2 The Quotient Map

There is a natural group homomorphism ϕ : G2 −→ S8 induced by the action of G2

on the positions of the eight cubelets. To construct this homomorphism, we read
off the corner positions of the cube in the following order: top-front-left, top-front-
right, top-back-left, top-back-right, bottom-front-left, bottom-front-right, bottom-
back-left, bottom-back-right. We then assign a number to each position according
to its place in the list, as shown in Figure 2. With these numbers, we find that

ϕ(u) = (1342);ϕ(d) = (5687);ϕ(f) = (1265); (1)

ϕ(b) = (3784);ϕ(l) = (1573);ϕ(r) = (2486)

so that, for example, u takes the cubelet at position 1 to the cubelet at position
3. We can then determine where ϕ takes an arbitrary element g ∈ G2.

Figure 2: Labels for the corner positions of the 2× 2 cube. Position 7 is hidden in
the bottom-back-left.

Proposition 2.1. The map ϕ : G2 −→ S8 is surjective.

Proof. It is enough to construct a single transposition of two adjacent cubelets;
one of two diagonally opposite cubelets on the same face; and one of two cubelets
connected by a long diagonal. Any transposition of cubelets falls into one of these
three categories, and we can interchange transpositions within each category by
rotating the cube as a whole.

We begin with two adjacent cubelets, represented by the transposition (34). We
define g1 = rdr−1f−1, g2 = g1ug1u

−1, and t1 = u−1g2. Using the listing (1) of the
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images of the generators under ϕ, we find that ϕ(t1) = (34), so that t1 transposes
the top-back-left and top-back-right cubelets. Figure 3 gives an illustration.

It should then be clear that t2 = lt1l
−1 and t3 = l2t1l

−2 provide the other two
classes of transposition. Since these three transpositions give a way to produce
an arbitrary transposition of cubelets, and since S8 is generated by transpositions,
this completes the proof that ϕ is surjective.

Figure 3: The move t1 described in Proposition 2.1, shown from the front and back
faces of the 2× 2 cube.

2.3 Kernel of the Quotient

The kernel K of ϕ is the subgroup of G2 that changes the orientations of the
cubelets while leaving their positions fixed. Since there are eight cubelets in total
and three orientations for each cubelet, and since rotations of the cubelets com-
mute, K must be a subgroup of Z8

3.

In this section, we will introduce the concept of local orientation and show that it
produces a Z3 algebraic invariant preserved by G2. We will then show that K is
the maximal subgroup of Z8

3 that respects this invariant.

Definition 2.2. The local orientation of a position i is an element si ∈ Z3 defined
by an orthonormal right-handed basis x̂i, ŷi, ẑi attached to the cubelet at that
position. These bases travel and rotate with the cubelets as they are acted on by
G2. si is the number of counterclockwise rotations by 2π/3 taking the basis at
position i in the solved state to the basis at i in the current state.

Figure 4 illustrates this definition. Each cubelet is arbitrarily assigned such a
basis in the solved state of the cube, and the change in local orientation at each
position depends on this assignment. As an example, the generator u preserves
local orientation only if the top face of the cube contains four basis vectors of the
same type. However, we can show that the sum of local orientations is an algebraic
invariant.

6



Figure 4: A basis for local orientation at position 1; bases for local orientations at
each position; the change in local orientation under f . In the right-most figure,
the changes in local orientations are ([1], [2], [0], [0], [2], [1], [0], [0]).

Figure 5: An illustration of Proposition 2.3. From left, the starting configuration;
applying the rotation in place; applying u; inverting the rotation in place to recover
u alone.

Proposition 2.3. The sum s ∈ Z3 of local orientations s1, . . . , s8 is independent
of basis and preserved by G2.

Proof. It is enough to show this for an arbitrary generator of G2, say u. We will
assume that the cube is in some arbitrary state and that we have already specified
bases x̂i, ŷi, ẑi. We can ignore the bottom face of the cube, since u fixes the po-
sitions and orientations of the bottom cubelets. We illustrate our proof in Figure 5.

First, rotate each top cubelet in place so that the basis vectors x̂i lie on the top
face. This changes s to some quantity s′. Next, apply u to the cube. This fixes
s′, as the bottom cubelets are fixed and the x̂i vectors of the top cubelets remain
on the top face. Finally, rotate each cubelet by the inverse of its first rotation.
This changes s′ back to s, so that s is preserved by this sequence of moves. This
sequence is equivalent to u alone, in the sense that they induce the same permu-
tation on the stickers, so u must fix s as well. A similar argument will show that
s is preserved by each of the remaining generators, so that s is invariant under
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G2.

Figure 6 illustrates this constraint: a clockwise twist at position 2 requires a
counterclockwise twist at position 4. We will see shortly that K is maximal under
the invariant s, so that the move in the figure is in fact an element of K.

We can write elements k ∈ K as vectors (k1, . . . , k8) ∈ Z8
3, where ki denotes

the change in local orientation at position i induced by k. By Proposition 2.3,
k1 + . . .+ k8 = [0]. Using this notation, the conjugation action of G2 on K can be
written in a straightforward way. If k = (k1, . . . , k8) and ϕ(g) = σ, one can show
that

gkg−1 = (kσ−1(1), . . . , kσ−1(8)) for ϕ(g) = σ (2)

We will use this fact to show that K is maximal under the Z3 invariant. Before
we do this, we will introduce some notation that will encode this property concisely.

Definition 2.4. Let k and m be integers greater than 1 and 0 respectively. The
group Zm

k,0 is the kernel of the homomorphism Zm
k −→ Zk which takes the m-tuple

of elements in Zk to their sum.

Proposition 2.5. K = Z8
3,0.

Proof. Since K respects the algebraic invariant, we already know that K ⊆ Z8
3,0.

To get equality, we first claim that the element k = (u2r−1u2r)(ur−1ur) is nontriv-
ial and contained in K. We do not consider it profitable to show this explicitly,
as it would require a notation for moves as permutations of the stickers which
we would not use elsewhere in the paper. The interested reader may check this
statement on an online Rubik’s cube simulator.

We now treat k as an arbitrary nontrivial element of K and consider its com-
ponents k1, . . . , k8. Since k1 + . . . + k8 = [0] and the ki are not all [0], there must
be distinct i, j such that ki ̸= kj.

Since ϕ is a surjective map, we can find g ∈ G2 such that ϕ(g) = (ij). We
then consider k′ = gkg−1. We find that k′i = kj, k

′
j = ki, and k

′
l = kl for all other

l, so that the difference k̃ = k − k′ is trivial in all components except i and j.
Moreover, k̃i + k̃j = [0].

With transpositions similar to those induced by g, we can use k̃ to construct
elements e1 = ([1], [2], [0], . . . , [0]), e2 = ([1], [0], [2], [0], . . . , [0]), and so on up to e7.
These elements form a basis for a seven-dimensional Z3-vector space V ⊆ K ⊆ Z8

3,0.
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Since Z8
3,0 is also seven-dimensional, the inclusions become equalities, so that

K = Z8
3,0 as claimed.

Figure 6: A typical element of K.

2.4 The Split Exact Sequence K −→ G2 −→ S8; Normal
Subgroups

In this section, we will close our study of the 2×2 cube’s group structure by proving
two results. We will first show that the short exact sequence K −→ G2 −→ S8

induced by ϕ is split. We will then show that G2 has only two nontrivial normal
subgroups: K, the kernel of ϕ, and L, the set of elements expressible as an even
number of generators.

Proposition 2.6. The short exact sequence K −→ G2 −→ S8 is split.

Proof. In order to construct a copy of S8 in G2, we will choose a basis x̂i, ŷi, ẑi for
a local orientation at each position. We then define H ⊆ G2 as the subgroup of
elements that fix local orientation pointwise for these bases. We claim that ϕ|H is
an isomorphism.

ϕ|H is injective, since any element of H that fixes the positions of the cubelets
is trivial. We can also see that ϕ|H is surjective as follows. Choose any σ ∈ S8.
Since ϕ is surjective, we can find some element g ∈ G2 such that ϕ(g) = σ. By
Proposition 2.3, g preserves the algebraic invariant s, and the same is true of
all elements of H. It follows that g differs from an element of H by some rota-
tion of the cubelets that preserves s, and by Proposition 2.5, we know that some
element k ∈ K will carry out this rotation. We then have that kg ∈ H and
ϕ(kg) = ϕ(g) = σ, so that ϕ|H is surjective. Then ϕ|H is an isomorphism, so that
the sequence is split as we claimed.

G2 is then isomorphic to the semi-direct product K ⋊ϕ̃ H, where ϕ̃ : H −→
Aut(K) is the conjugation action given by (2). Since we have a natural isomor-
phism between H and S8, we can equivalently write the semi-direct product as
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K ⋊ϕ̃ S8, and we will use this notation from here on. We illustrate a typical
element of H in Figure 7.

Figure 7: The element of H corresponding to the transposition (26), defined using
the local orientation on the right.

Using ϕ, we will now list the non-trivial normal subgroups N ⊆ G2. In addition
to K, we will identify the set L ⊆ G2 of elements expressible as an even number of
generators. We begin by noting that for any nontrivial normal subgroup N ⊆ G2,
ϕ(N) must be isomorphic to the trivial group, A8, or S8.

Proposition 2.7. If ϕ(N) is trivial, N = K.

Proof. Since ϕ(N) is trivial, N ⊆ K. Since N is nontrivial, it contains some
nontrivial element k ∈ K. Since N is closed under conjugation by G2, we can
apply the arguments of Proposition 2.5 to show that K ⊆ N . We conclude that if
ϕ(N) is trivial, N = K.

Proposition 2.8. If ϕ(N) ≃ S8, then N = G2.

Proof. We will show thatN has nontrivial kernel under ϕ, so thatK ⊆ N as before.
To see this, take n ∈ N such that ϕ(n) = (123), and take k = ([1], [2], [0], . . . , [0]) ∈
K. Since N is normal in G2, kn

−1k−1 ∈ N , so that nkn−1k−1 ∈ N . By the
formula (2), we know that nkn−1 = ([0], [1], [2], . . . , [0]) ∈ K, so that nkn−1k−1 =
([2], [2], [2], . . . , [0]) ∈ K. Then N ∩ K is nontrivial, so that K ⊆ N and N =
G2.

Proposition 2.9. If ϕ(N) ≃ A8, then N = L.

Proof. By the same argument as in Proposition 2.8, we find that N ∩ K is non-
trivial, so that K ⊆ N . Since ϕ(N) ≃ A8 is normal in S8, we can define a map
ψ : S8 −→ Z2 by the quotient S8/ϕ(N). SinceK ⊆ N , it follows thatN = kerψ◦ϕ.

To see that N = L, consider the image of any generator a of G2 under ψ ◦ ϕ.
From the formula (1), we can see that ϕ(a) has odd sign for all a, so that
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(ψ ◦ ψ)(a) = [1] ∈ Z2. If we then write some element g ∈ G2 as a word a1 . . . an,
we see that n is even if and only if g ∈ N . This shows that the parity of n is
well-defined and that N = L, as claimed.

As a final observation, we note that G2 is centerless, since any central element
would generate a cyclic normal subgroup of G2. We also note that the abelian-
ization of G2 is Z2, since this is the only nontrivial abelian quotient of G2 by the
propositions above. This closes our analysis of the 2× 2 cube group, and we now
turn to the 3× 3 cube.

3 Group Structure of the 3× 3 Cube

In this section, we study G3 through the surjective map ψ : G3 −→ G2 induced by
taking like generators to like generators. Since we have already studied G2, we will
concentrate on the kernel N of ψ consisting of moves that fix the corners of the
cube. As in Section 2, we will study N through the map β : N −→ S12 recording
permutations of the edge pieces. We will find in Proposition 3.4 that β(N) = A12.
We then turn as before to the kernel M of N , or the subgroup of Z12

2 describing
rotations of the edges in place. We review the concept of local orientation, find
that it induces a Z2 invariant preserved by G3, and show in Proposition 3.7 that
M is maximal under this invariant. As a final group-theoretic result, we show in
Theorem 3.10 that the map ψ : G3 −→ G2 is split, so that G2 can be realized as
a subgroup of G3.

3.1 Setup of the Problem

Figure 8: The 3×3×3 Rubik’s cube, with labels for the corner and edge positions.

The 3×3×3 Rubik’s cube, also called here the “3×3 cube”, is divided into 26
cubelets of equal size. Each face of the 3× 3 cube is three cubelets high and three
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wide. As before, the outer faces of each cubelet are marked with a colored sticker,
so that each face of the 3× 3 cube is marked with nine stickers of the same color.
We will use the same color conventions as in Section 2.1. Among the cubelets,
there are 8 corner pieces, each shared between three faces; 12 edge pieces, each
shared between two; and 6 center pieces which belong to one face only. Figure 8
shows the cube in its solved state.

We will realize the 3 × 3 cube group G3 through permutations on the stickers.
As before, G3 is generated by elements u3, d3, b3, f3, r3, and l3 which rotate
the specified face by 90 degrees clockwise and leave the remaining cubelets fixed.
These moves send corners to corners and edges to edges, and they fix the center
pieces pointwise.

We will keep the listing of corner positions that we introduced in Section 2.2.
As shown in Figure 8, we will also assign letters a through l to the edge positions
in this order: top-back, top-right, top-front, top-left, back-left, back-right, front-
right, front-left, bottom-back, bottom-right, bottom-front, bottom-left. We can
then construct a homomorphism α : G3 −→ S12 ×S8 by determining the action of
each generator on the corner and edge pieces. We find that

α(u3) = ((abcd), (1342));α(d3) = ((ilkj), (5687)); (3)

α(b3) = ((aeif), (3487));α(f3) = ((cgkh), (1265));

α(r3) = ((bfjg), (2486));α(l3) = ((dhle), (1573))

so that, for example, r3 sends the corner cubelet at position 2 to position 4 and
the edge cubelet at position b to position f .

3.2 The Quotient Map ψ : G3 −→ G2; Its Kernel

Given the generators u3, . . . , l3 of G3 and u2, . . . , l2 of G2, we can construct a group
homomorphism ψ : G3 −→ G2 by sending u3 to u2, d3 to d2, and so on for the
remaining generators. In effect, ψ suppresses the positions and orientations of the
edges. We can see that ψ is a homomorphism by recognizing that for each gen-
erator g3 of G3 and the associated generator g2 of G2, g3 and g2 induce the same
permutation on the corner stickers.

The kernel N of ψ is the normal subgroup of G3 that acts on edge pieces while
leaving the corners fixed. We will analyze N in the same way that we analyzed
G2 in Section 2, through the map β : G3 −→ S12 recording the positions of the
edges. We will show that β induces the sequence Z2

12,0 −→ N −→ A12, recalling
Definition 2.4 for the group Zm

k,0. We begin with the following proposition.
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Proposition 3.1. Let {g2,i} = {u22, r2−1, . . . , r2} be the sequence of generators of
G2 that provided a nontrivial element of K in Proposition 2.5, and let {g3,i} be
the associated sequence of generators of G3. If h ∈ G3 is the composition of the
elements g3,i, then α(h) = ((abc), 1).

Proof. By Proposition 2.5 and the map ψ : G3 −→ G2, h will fix the positions of
the corners, so it is enough to consider its action on the positions of the edges.
We recall from Proposition 2.5 that h = (u3)

2(r3)
−1(u3)

2r3u3(r3)
−1u3r3. Referring

to the map α defined above, it is straightforward to check that h induces the
permutation (abc) on the edges, as claimed. Figure 9 provides an illustration.

Figure 9: The move h described in Proposition 3.1, shown from the front and back
of the 3× 3 cube.

By applying this process to different faces of the cube, we can find moves that
induce a 3-cycle on any three edges with a common face. We will call this set of
moves H. H itself is not contained in N , since we know by Proposition 2.5 that
its elements rotate the corners in place. However, [h, g] ∈ N for any h ∈ H and
g ∈ H ∪ N , since rotations of the corners commute and H and N permute the
corners trivially. In the following propositions, we will use H to determine the
group structure of N .

Proposition 3.2. β(N) ⊇ A12.

Proof. We define a subset S of the edge pieces of the cube such that β(N) contains
the alternating group on the edge pieces in S. We first claim that a, b, and f are
in S. By Proposition 3.1, we can find elements h1, h2 ∈ H such that β(h1) = (abc)
and β(h2) = (afe). As explained above, [h1, h2] ∈ N . β([h1, h2]) = (abf), so that
β(N) contains the alternating group on these letters. We illustrate this move in
Figure 10.

13



We then introduce a procedure for adding an edge piece e1 to S when S con-
tains two edge pieces e2, e3 on the same face of the cube as e1. We claim that
for any two edge pieces x, y in S, (e1xy) ∈ β(N). We first assume that one of
these, say x, is distinct from e2 and e3. We can then find some h ∈ H such that
β(h) = (e1e2e3), some n1 ∈ N such that β(n1) = (e2e3x), and some n2 ∈ N
such that β(n2) = (e2e3)(xy). We then have that n = [h, n1]n2 ∈ N and that
β(n) = (e1xy).

We next assume that x = e2 and y = e3. Since S contains at least three edges,
we can find some edge z ̸= x, y in S. We can then find h ∈ H and n1 ∈ N such
that β(h) = (e1xy) and β(n1) = (xzy). As before, we have that n = n1[h, n1] ∈ N
and that β(n) ∈ (e1xy). We then have that β(N) contains all 3-cycles on its prior
letters and e1, so that we can expand S to include e1 as claimed.

Starting from S = {a, b, f}, we use this procedure to add edge pieces to S in
this order: c, d, g, h, e, i, j, k, l. One can readily check that each edge piece shares
a face with two edge pieces in S when it is added. Since S contains all of the edge
pieces once we finish, β(N) contains the alternating group on all edges of the cube,
so that β(N) ⊇ A12 as claimed.

Figure 10: The move [h1, h2] described in Proposition 3.2, shown from the front
and back of the 3× 3 cube.

We will now show that β(n) ∈ A12 for any n ∈ N , so that β(N) is in fact equal
to A12. For future convenience, we will split the proof into two short propositions.

Proposition 3.3. For any g ∈ G3, the factors of α(g) ∈ S12 × S8 have the same
sign.

Proof. We can see from the formula (3) that for any generator a of G3, the factors
of α(g) have odd sign in S8 and S12. Since the signs of these factors agree for all
generators a, they will agree for all elements g ∈ G3 as well.
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Corollary 3.4. β(N) = A12.

Proof. Since each n ∈ N acts trivially on the corners of the cube, α(n) will have
even sign in S8 and so in S12. Since β(n) is simply the restriction of α(n) to the
S12 factor, it will have even sign for all n, so that β(N) ⊆ A12. Combining this
with Proposition 3.2 proves the claim.

We are left to determine the kernel M of β, or the group of rotations on
the edges. In the next two propositions, we will show that M is isomorphic to
Z12

2,0, using the same techniques as in Propositions 2.3 and 2.5. We will also pro-
vide a formula for the conjugation action of G3 on M analogous to the formula
(2). With this information, we can describe N through the short exact sequence
Z12

2,0 −→ N −→ A12 induced by β. As a first step, we extend the definition of local
orientation to edge positions and provide an illustration in Figure 11.

Definition 3.5. Following Definition 2.2, the local orientation of an edge position
x is an element tx ∈ Z2 defined by an orthonormal basis v̂x, ŵx attached to the
cubelet at that position. tx is the number of rotations by π taking the current
basis at i to the basis in the solved state.

Figure 11: At left, bases for local orientations at each position. The edge orienta-
tion vectors vx are denoted by black arrows, and the vectors wx are left implicit.
At right, the change in local orientation under rf . The changes in local orien-
tations are (a, b, c, d) = ([0], [1], [1], [0]), (e, f, g, h) = ([0], [0], [0], [1]), (i, j, k, l) =
([0], [0], [1], [0]); (1, 2, 3, 4) = ([1], [2], [0], [1]), (5, 6, 7, 8) = ([2], [2], [0], [1]).
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We can then extend Proposition 2.3 to produce an algebraic invariant on the
edge pieces.

Proposition 3.6. Let t ∈ Z2 denote the sum of local orientations ta, . . . , tj of the
edges. t is preserved by G3.

Proof. As in Proposition 2.3, it is enough to show this for an arbitrary generator
g of G3, say u. We follow the same procedure as before, rotating the edges of the
top face in place, rotating the entire top face, and then reversing the first rotation
in place. This permutation of the stickers preserves t and is equivalent to u, so
that u preserves t as well. Since u is arbitrary, any generator of G3 will preserve
t. Then any element of G3 will preserve t, completing the proof.

We then have that M ⊆ Z12
2,0, as each of the twelve edges has two orientations

and the sum of these orientations is fixed. We can then write elements m ∈M in
the form (ma, . . . ,ml), where mx ∈ Z2 denotes the rotation on edge x. As with
the corners of the 2× 2 cube, M is a normal subgroup of G3, and the conjugation
action of G3 on M is given by the formula

gmg−1 = (mσ−1(a),mσ−1(b), . . . ,mσ−1(l)) (4)

where g is an arbitrary element of G3 and σ = β(g). We will use this action to
determine M completely.

Proposition 3.7. M is maximal under the invariant t, so that M ≃ Z12
2,0.

Proof. Returning to Proposition 3.1, let h1 = u2r−1 . . . r, so that β(h1) = (abc).
Let h2 = f 2u−1 . . . u be the corresponding permutation on the front face, so that
β(h2) = (cgh). Let h3 = r2f−1 . . . f be the corresponding permutation on the right
face, so that β(h3) = (bjg). Finally, let m = [h3

−1, h1][h2, h1
−1].

We then assert that m ∈M . In the component form given above, mc = mg = [1],
with all other components zero. As in Proposition 2.5, we leave the computation
to the reader, although we illustrate m in Figure 12.

Using the component notation, we can consider M as a vector subspace of Z12
2 .

Since M ⊆ Z12
2,0, we know that M is at most 11-dimensional. We can choose a

candidate basis for M of elements qx (x ̸= a), where (qx)a = (qx)x = [1] and all
other components are zero; for example, qb = ([1], [1], [0], [0], . . . , [0]). We then
recall the element m ∈M given above. Since the nonzero components of m in this
space are sparse, we can take them to the nonzero components of any qx through a
permutation in A12 by transposing trivial components if necessary. By Proposition
3.2, any such permutation corresponds to conjugation by some element of H, so
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that each qx is in fact included in M by normality. Then since the qx are a set of
11 Z2-linearly independent elements in M , M is exactly 11-dimensional, so that
M ≃ Z12

2,0 as claimed.

Figure 12: The move m described in Proposition 3.7, shown from the front and
back of the 3× 3 cube.

In sum, then, we have the following results: the kernel N of ψ : G3 −→ G2

fits into the short exact sequence M −→ N −→ N/M induced by β, where M
is the group of rotations on the edges and N/M records permutations of their
positions. By Corollary 3.4 and Proposition 3.7, we can write this sequence as
Z12

2,0 −→ N −→ A12, with the conjugation action given by the formula (4). By
repeating the analysis in Section 2.4, one can show that this sequence is split,
although we will omit the proof of this.

3.3 The Split Exact Sequence N −→ G3 −→ G2

In this section, we will analyze the short exact sequence N −→ G3 −→ G2 induced
by ψ. We will show that this sequence is split, so that we can realize the 2 × 2
cube as a subgroup of the 3× 3.

First, recall the map α : G3 −→ S12×S8 given in Section 3.1. Let P = α(G3), and
let J = kerα. We can write J = M ⊕ L, where L is the subgroup of G3 rotating
the corners in place andM is the subgroup rotating the edges as before. We begin
by establishing some facts about L.

Proposition 3.8. ψ induces an isomorphism L −→ K, where K is the group of
corner rotations in G2.

Proof. It is clear that ψ|L is injective and that ψ(L) ⊆ K. To see that ψ(L) is
surjective, take any k ∈ K, and take some g ∈ ψ−1(k). Since g fixes the corners,
we know by Proposition 3.3 that β(g) has even sign, and we also know that g
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respects the algebraic invariant t. However, we know from Section 3.2 that N is
maximal under these constraints, so that n−1g acts trivially on the edges for some
n ∈ N . We then have that n−1g ∈ L and that ψ(n−1g) = ψ(g) = k, so that
ψ(L) = K as claimed.

We then have that J ≃ Z12
2,0 ⊕ Z8

3,0, so that it is maximal under the invariants
s and t. Figure 13 illustrates a typical element.

Figure 13: A typical element of J.

We will use the maximality of J to prove the next proposition.

Proposition 3.9. The sequence J −→ G3 −→ P induced by α is split.

Proof. Let Q ⊆ G3 be the group of moves preserving local orientation on both the
corners and edges. α|Q is injective, since if α(q) is trivial, then q fixes both position
and orientation. To see that α|Q is surjective, take any p ∈ P and g ∈ α−1(p),
and let j ∈ Z12

2,0 ⊕ Z8
3,0 denote the change in local orientation induced by g. Since

j preserves the algebraic invariants s and t, and since J consists of all rotations of
the cubelets preserving s and t, j ∈ J . Then α(j−1g) = p, and j−1g ∈ Q, so that
α−1(p) ∩Q is nontrivial as claimed. This completes the proof.

We can then write G3 as J ⋊α̃ P , where the map α̃ : P −→ Aut(J) is the con-
jugation action of P on J . This is given by the formulas (2) and (4), where the S8

factor of P acts on L according to (2) and the S12 factor acts onM according to (4).

The next step is to choose a sign map σ : S8 −→ S12, where we embed Z2 in
S12 as the group {(bc), 1}. We can then construct the subgroup S of S12 × S8

consisting of elements (σ(p2), p2) for p2 ∈ S8.

Theorem 3.10. L⋊α̃ S is contained in G3 and is isomorphic to G2 under ψ.
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Proof. In order to show that S ⊆ P , we note that the map ϕ ◦ ψ : G3 −→ S8

is surjective, so that G3 contains all possible permutations of the corners. Given
any p2 ∈ S8, we then know that P contains an element (p1, p2) for some p1 ∈ S12,
and Proposition 3.3 requires that p1 and p2 have the same sign. It follows that
σ(p2) = p1q for some q ∈ A12, and since A12×1 ⊆ P by Corollary 3.4, (σ(p2), p2) =
(p1, p2)(q, 1) ∈ P . We then have that S ⊆ P , and since L ⊆ J is normal in G3,
L⋊α̃ S ⊆ J ⋊α̃ P = G3.

Using the standard component notation for elements of L⋊α̃S and G2 = K⋊ϕ̃S8,
we can then see that ψ(l, (σ(p2), p2)) = (l, p2). This map is clearly surjective in
the second component, and we know by Proposition 3.8 that it is also surjective
in the first. It is also clearly injective, so that the restriction of ψ to L⋊α̃ S is an
isomorphism as claimed.

Figure 14: The element of L⋊α̃ S corresponding to r2 ∈ G2.

The subgroup L⋊α̃ S is easy to describe verbally. For any g2 ∈ G2, the corre-
sponding element h ∈ L ⋊α̃ S acts on the corners of the 3 × 3 cube as g2 acts on
the 2× 2. If ϕ(g2) is odd, h exchanges edges b and c while fixing local orientation.
If not, h fixes the edges completely. Figure 14 illustrates a typical element.

In fact, this construction will also work with any σ : S8 −→ S12 that preserves sign,
so that there are many different sections for ψ. However, since σ must preserve
sign, there is no section that fixes the edges of the 3× 3 cube.

This completes our analysis of the 3×3 cube group. Before moving on to minimal
representations, we prove a final result concerning the sequence J −→ G3 −→ P
that will be useful in Section 5.

Proposition 3.11. P = (A12 × A8) ⋊ Z2, the subgroup of S12 × S8 consisting of
elements whose factors have the same sign.
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Proof. By Proposition 3.3, we know that P = α(G3) ⊆ (A12 × A8) ⋊ Z2. To
get the reverse inclusion, we can recycle the argument in the first paragraph of
Theorem 3.10. Given any p1 ∈ S12 and p2 ∈ S8 with matching signs, we find
some (p′1, p2) in P , note that (p1(p

′
1)

−1, 1) ∈ A12 × 1 ⊆ P , and conclude that
(p1, p2) = (p1(p

′
1)

−1, 1)(p′1, p2) ∈ P . We then have that P ⊇ (A12 × A8) ⋊ Z2, so
that we get equality as claimed.

4 Minimal Representations of Split Extensions

by Abelian Groups

The analyses carried out in Sections 2 and Section 3 reveal the group structures
of both the 2 × 2 and 3 × 3 Rubik’s cubes to be surprisingly elementary. Upon
choosing a different generating set, the puzzles become relatively straightforward.
This is in large part due to the simplicity of the group structures. Both G2 and G3

are split extensions by large abelian groups of a complementary group which acts
by permutations. G2 is isomorphic to the split extension of S8 by Z8

3,0 as seen in
Proposition 2.6, whereas G3 is the split extension by Z12

2,0⊕Z8
3,0 of (A12×A8)⋊Z2

by Propositions 3.9 and 3.11.

We wish to calculate the minimal dimension of faithful representations of G2 and
G3. By Cayley’s theorem, an upper bound on the dimension is given by the order
of the group. However, this is generally far from minimal. Moreto sharpened this
bound over the complex numbers to the square root of the order of the group [3].
The question of how to improve these bounds with additional assumptions on the
group structure, such as if the group is nilpotent or solvable, seems to remain wide
open. Matters grow even more complicated when the base field is not algebraically
closed.

As we are interested in minimal representations over both the complexes and re-
als, we begin this section with a brief refresher on real, complex, and quaternionic
representations. Motivated by our ambitions to better understand representations
of the groups G2 and G3, we proceed to study minimal faithful representations of
finite abelian groups. This analysis is carried out in the first part of this section
where we compute the minimal dimension of both real and complex representa-
tions of finite abelian groups A. We express these bounds entirely in terms of the
invariant factor decomposition of A.

We then determine some bounds on degrees of faithful real and complex represen-
tations of split extensions by abelian groups A of complementary groups H whose

20



splitting homomorphism H −→ Aut(A) is injective. We relate these bounds to the
so called minimal permutation degree as in [4]. Simply stated, the minimal per-
mutation degree of a finite group G is the smallest number n for which G embeds
inside an Sn. This number is denoted by µ(G). Similarly, we denote by mdimF (G)
the smallest dimension for which G admits a faithful representation over a field F .
For our purposes, we will largely be concerned with F = C or F = R.

Many of these calculations are afforded by Schur’s lemma which states that the
only G-equivariant endomorphisms between irreducible complex vector spaces are
multiples of the scalar identity. As a consequence, the irreducible complex rep-
resentations of abelian groups are all one-dimensional. We leverage this fact to
prove that the minimal faithful complex dimension of a split product of an abelian
group A and a complementary subgroup H that acts faithfully on A is at least the
minimal permutation degree of H in Theorem 4.4.

In the context of real representations, the irreducible representations of abelian
groups become slightly more complicated. Every irreducible representation of an
abelian group is either 1 or 2 real dimensional. This follows from the fact that if
one starts with a real representation of an abelian group A and extends scalars
to C to obtain a complex representation whose degree is equal to the original real
degree, this new complex representation either remains irreducible as a complex
representation or splits into two conjugate irreducible factors. In the former case,
the complex dimension must equal one, as complex irreducible representations are
one-dimensional. In the latter case, the complex dimension must equal two, be-
cause the representation splits into conjugate irreducible pieces. Thus, the original
representation is either 1 or 2 real dimensional. This additional dimension allows
for a more rich automorphism group associated to the splitting homomorphism of
the semi-direct product as seen in Theorem 4.6.

4.1 Real, Complex, and Quaternionic Representations

In this subsection we provide a brief review of real, complex, and quaternionic
representations. Much of what follows is taken directly from Fulton and Harris’s
Section 3.5 on real, complex, and quaternionic representations [1].

A complex representation (ρ, V ) is called real if there exists a representation (σ,W )
over R for which C⊗R W ≃ V . That is to say, a complex representation is real if
and only if it is obtainable by an extension of scalars from a representation over a
real vector space. Equivalently, there exists a basis of V for which the correspond-
ing matrix representation of ρ is real-valued. Note in this instance, the character
of the representation in question is real-valued.
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A real-valued character does not guarantee a real representation. One can con-
struct complex representations whose character is real-valued but which cannot
be obtained as an extension of scalars from any representation (σ,W ) over R. A
straight-forward example can be constructed by considering the quaternion group
Q8 sitting inside SU(2,C) acting naturally on C2.

Representations such as the example provided above are called quaternionic. Specif-
ically, a complex representation (ρ, V ) is called quaternionic if it is the restriction
of scalars of a representation (ϕ, U) over H. Such representations are also com-
monly called pseudo-real.

Complex representations which are neither real nor quaternionic are simply called
complex. For our purposes we will not need to differentiate between quaternionic
and complex representations, so we call either type of such representation non-real.

Given a non-real representation (ρ, V ), one may restrict scalars to obtain a real
vector space W satisfying dimRW = 2dimC V . If we extend scalars on W , we
may construct an isomorphism between C ⊗R W and V ⊕ V . Define the map
C ×W −→ V ⊕ V which takes (c, v) to (cv, cv). It is routine to check that this
map induces an isomorphism between C⊗RW and V ⊕V as complex vector spaces.

Consequently, if we take a non-real representation V and add its conjugate piece
to obtain V ⊕ V , the resulting representation is real in the sense that it is an
extension of scalars from a representation over a real vector space.

In our efforts to understand the relation between the minimal complex and mini-
mal real dimensions of a finite group, it is natural to consider the following process.
Take a minimal faithful complex representation (ρ, V ) of a finite group G. V splits
into the sum of irreducible pieces which we separate into real and non-real pieces,
and denote by Vi and Wi respectively. One may obtain a faithful real represen-
tation of G by adding the conjugate pieces Wi to V . We informally refer to this
process as realification or real-ifying a complex representation.

A natural question which we will investigate in Section 5.2 is whether or not every
minimal faithful real representation is the realification of some minimal faithful
complex representation.

With the preliminaries established, we may move on to investigating the mini-
mal faithful real and complex representations of finite abelian groups.
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4.2 Minimal Representations of Abelian Groups

We begin our analysis by calculating the minimal real and complex dimensions of
finite abelian groups. To this end, we utilize the invariant factor decomposition of
a finitely generated module M over a principal ideal domain R. Given such an M
there exists a sequence of non-zero elements di ∈ R satisfying d1|d2| . . . |ds, and a
non-negative integer r for which

M ≃ Rr ⊕R/(d1)⊕R/(d2)⊕ . . .⊕R/(ds) (5)

The above decomposition in (5) is an R-module isomorphism and is called the
invariant factor decomposition of M . The integer r is called the rank of M , and
the elements di are called the elementary divisors. The rank is uniquely determined
whereas the elementary divisors are unique up to unit in R. A module M is called
a torsion module if the rank r = 0. An advantage of this decomposition is that it is
‘preserved’ under homomorphism. This is made precise by the following statement
which can be found in Jacobson [2].

Proposition 4.1. [Jacobson Exercise 3.9.4 (pg. 194)] Let M be a torsion module
over the principal ideal domain R with invariant factors (d1) ⊃ (d2) ⊃ . . . ⊃ (ds).
The homomorphic image M of M is also a torsion module whose invariant factor
ideals (d1) ⊃ (d2) ⊃ . . . ⊃ (dt) satisfy t ≤ s and dt|ds, dt−1|ds−1, . . . ,and d1|ds−t+1.

As we are currently concerned with finite abelian groups, we are interested in
the case where our principal ideal domain is R = Z and our module is torsion. In
this setting, the conclusions of Proposition 4.1 still hold for subgroups of our finite
abelian group A. This is a simple consequence of the fact that every subgroup
B ⊂ A of a finite abelian group A is isomorphic to a quotient of A.

With these preliminaries established, we are able to prove the first theorem of
this section regarding mdimC(A) and mdimR(A) for finite abelian groups A.

Theorem 4.2. Let A be a finite abelian group whose invariant factor decomposi-
tion is given by A ≃ Za

2⊕Zda+1⊕ . . .⊕Zda+b
where d1 = . . . = da = 2 and da+1 > 2.

Then mdimC(A) is equal to the number of invariant factors in the invariant factor
decomposition of A, a+ b. The real dimension, mdimR(A), is equal to a+ 2b.

Proof. We first begin with the complex case. It is straightforward to construct
a faithful (a + b)-complex dimensional representation of A. For each elementary
divisor di, let ωdi be the di-th root of unity exp(2πi/di). Identify each Zdi with
the cyclic subgroup of ⟨ωdi⟩ ⊂ C×. Here C× acts on C by multiplication. Form
the direct sum of these representations to obtain a faithful representation of A on
Ca+b, so mdimC(A) ≤ a+ b.
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We claim this construction is minimal in dimension. Let (ρ, V ) be a faithful
complex representation of A. Because A is abelian, V decomposes as the direct
sum of one-dimensional irreducibles, say V1, V2, . . . , Vp. For each a ∈ A and each i
where 1 ≤ i ≤ p, ρ(a) acts by scalar multiplication on Vi. Because a has order at
most da+b, as the order of a divides da+b, this means ρ(a) acts on each Vi by some
da+b-th root of unity. Hence we may identify each ρ(a) with p elements in Zda+b

.
These elements correspond to how ρ(a) acts on each Vi. By faithfulness of the rep-
resentation, A itself may be identified with a subgroup of Zp

da+b
. By the remarks

following Proposition 4.1, we have that there are at least as many invariant fac-
tors in Zp

da+b
as there are in A. Thus p ≥ a+b as claimed, hence mdimC(A) = a+b.

To prove the analogous statement in the real case, we begin by first noting that one
can obtain a faithful (a+2b)-dimensional real representation by simply restricting
scalars of the faithful complex representation constructed in the beginning of this
proof, so mdimR(A) ≤ a+2b. We claim this construction is minimal in dimension.

Let (ρ, V ) be a faithful real representation of A. Begin by decomposing V into its
1 and 2 real-dimensional irreducible factors. Say V1, . . . , Vp are the 1-dimensional
pieces and W1, . . . ,Wq are the 2-dimensional pieces. On each Vi, ρ(a) acts by
multiplication by ±1. On each Wi, ρ(a) acts by rotation. The angle of rotation
is some integer multiple of 2π/da+b as ρ(a) has order at most da+b. We may very
well consider this angle of rotation as an integer multiple of 2π/(2da+b) instead.

Via our representation ρ, we may assign to each a ∈ A a p-tuple of elements
in Z2 and a q-tuple of elements in Z2da+b

. As ρ is faithful, this map defines an
embedding of A into Zp

2 ⊕ Zq
2da+b

. The first p factors are determined by whether

ρ(a) acts by ±1 on each Vi, whereas the latter q factors are determined by how
many integer multiple rotations by 2π/(2da+b) were applied to Wi by ρ(a).

Because A has (a + b) invariant factors in its invariant decomposition and is a
subgroup of Zp

2 ⊕ Zq
2da+b

, by the remarks following Proposition 4.1, p+ q ≥ a+ b.
Similarly, because for each a < i ≤ a+ b, we have di > 2, there must be at least b
copies of Z2da+b

in the invariant factor decomposition Zp
2 ⊕Zq

2da+b
. Thus, q ≥ b, so

dimR V = p+2q ≥ a+2b. Hence the dimension of any faithful real representation
of A is at least a+ 2b, thus mdimR(A) = a+ 2b.
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4.3 A Lower Bound on Minimal Faithful Representations
of Split Extensions by Abelian Groups

Having established the precise minimal faithful dimensions of real and complex
finite abelian groups, we move on to calculating a lower bound of faithful repre-
sentations of groups G which are split extensions by finite abelian groups A of
some complementary group H where the splitting homomorphism H −→ Aut(A)
is faithful. This class of groups contains our Rubik’s cube groups G2 and G3.

The crux of these arguments comes from utilizing the faithfulness hypotheses of
both the representation itself and the splitting homomorphism H −→ Aut(A).
Given a representation G, we may restrict it to A to obtain several A-invariant
pieces. These pieces are permuted by the complement H, and thus we obtain a
permutation representation of H into some symmetric group. If we are better able
to understand the kernel of this homomorphism, if any, we then obtain bounds on
the number of irreducible pieces, and thus, the dimension of the representation in
question. To this end, we begin first with a proposition that formalizes some of
the discussion in this paragraph.

Proposition 4.3. If (π, V ) is a representation of some group G over a field F and
N is a normal subgroup of G, then elements of G will permute the N-irreducible
subrepresentations Vi of V .

Proof. Let W be some N -irreducible subrepresentation of V , and consider the
space π(g)W = {π(g)w : w ∈ W} for some g ∈ G. We can first show that
this space is N -invariant. For any n ∈ N and any w ∈ W , π(n)π(g)w =
π(g)π(g−1ng)w = π(g)w′ for some w′ ∈ W , since N is normal and W is N -
invariant. We can then show that π(g)W is N -irreducible. If it decomposes into
N -invariant subspaces U1 and U2, then π(g−1)U1 and π(g−1)U2 are N -invariant
subspaces of W , which contradicts the assumption that W is N -irreducible. Then
π(g) induces a set map on the N -irreducible subrepresentations Vi, and since π(g)
is invertible, this map must be a permutation. This completes the proof.

For our purposes, we are largely interested in the semi-direct product G of
a finite abelian group A with a complementary group H that acts faithfully on
A. While the permutation map is defined on all of G, it is trivial on its normal
subgroup A, so we instead restrict the permutation map to the complementary
subgroup H. With this lemma and the preliminaries we established, we are ready
to prove our first theorem.

Theorem 4.4. Let G be the semi-direct product of a finite abelian group A and a
finite group H, and assume the splitting map H −→ Aut(A) is injective. Let (π, V )
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be a faithful representation of G over C. Let V1, V2, . . . , Vp denote the irreducible
subrepresentations of V restricted to A. The group H permutes these pieces and
induces a faithful group homomorphism H −→ Sp, so mdimC(G) ≥ µ(H).

Proof. The irreducible subrepresentations Vi ofA are all one-dimensional by Schur’s
lemma. Since V =

⊕p
i=1 Vi, we have that p = dimC V . By Proposition 4.3, H per-

mutes these subrepresentations, and thus induces a homomorphism H −→ Sp. We
claim this homomorphism is injective.

If h ∈ H and stabilizes each Vi, we guarantee the existence of c1, . . . , cp ∈ C×

so that πh(vi) = civi for any vi ∈ Vi. We claim that h must be equal to the
identity. As every a ∈ A also stabilizes each Vi, we have that π(hah−1) = π(a)
as both a and h act by scalar multiplication on each Vi. By faithfulness of the
representation this means that hah−1 = a for all a ∈ A. By the hypothesis that
the splitting map is injective, we have that h = 1. Because the homomorphism
H −→ Sp is injective, we have that p ≥ µ(H). Hence the degree of a minimal
faithful representation of G over C is at least µ(H).

From this theorem, we immediately obtain the following corollary.

Corollary 4.5. Let A be an abelian group and let G be a semi-direct product of A
with Sm where Sm acts faithfully on A by automorphisms. Let (π, V ) be a faithful
representation of G over C. The map Sm −→ Sp induced by permutations of the
irreducible pieces as in Theorem 4.4 is injective, thus mdimC(G) ≥ m.

Proof. This is a simple consequence of the fact that if Sm embeds in Sp, then
p ≥ m.

We now prove an analogous result to that of Theorem 4.4 in the real setting.
In this case, the irreducible representations of the normal abelian subgroup are
either one or two dimensional. The two dimensional case affords instances where
the complementary subgroup could stabilize irreducible pieces, but reverse orien-
tations.

Theorem 4.6. Let G be the semi-direct product of a finite abelian group A and
a finite group H, and assume the splitting map H −→ Aut(A) is injective. Let
(π, V ) be a faithful representation of G over R. Let V1, V2, . . . , Vp denote the 1-
dimensional irreducible subrepresentations of V restricted to A andW1,W2, . . . ,Wq

denote the 2-dimensional irreducible subrepresentations of V restricted to A. The
group H permutes these pieces and induces a faithful group homomorphism H −→
Zq

2 ⋊ (Sp × Sq) where the Sp factor of Sp × Sq acts trivially on Zq
2 and Sq by

permutations on Zq
2.
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Proof. We begin by noting that H must permute the 1 and 2 dimensional A-
irreducible subrepresentations Vi and Wi of V amongst themselves by Proposition
4.3. This defines a homomorphism H −→ Sp × Sq. We construct another homo-
morphism H −→ Zq

2 ⋊ (Sp × Sq) that will factor through the permutation map
H −→ Sp × Sq.

To begin, fix an orientation oi on each 2-dimensional A-irreducible subrepresen-
tation Wi for i = 1, . . . , q. Such a choice is arbitrary, but once chosen, we fix
it once and for all. For each h ∈ H and i = 1, . . . , q, we know that π(Wi) is
equal to another one of the irreducible factors π(Wi) = Wj. For each i, assign
an element of Z2 depending on whether π(h)|Wi

: (Wi, oi) −→ (Wj, oj) preserves,
or reverses, the orientation. Thus, to each element h ∈ H, we assign a q-tuple of
elements of Z2 which keep record of whether π(h)|Wi

is orientation preserving or
reversing from Wi to π(h)(Wi). Augmenting this with the permutation map, we
have a well defined homomorphism from H to Zq

2 ⋊ (Sp × Sq) where Sq acts on
Zq

2 by permutations and Sp acts trivially on Zq
2. In effect, one may think of this

as a ‘decorated’ permutation map of the representation which records where the
irreducible pieces are sent via a permutation, and, whether or not orientations are
preserved or reversed on each Wi via a q-tuple of elements of Z2.

We claim this homomorphism is injective. Fix an h ∈ H in the kernel of the
homomorphism. Such an h defines an automorphism of A for which π(h)(Vi) = Vi
and π(h)(Wi) = Wi for all irreducible pieces. Because on each Vi, π|Vi

acts by scalar
multiplication by ±1, we have that π(hah−1)|Vi

= π(a)|Vi
. On each 2-dimensional

Wi, π(h)|Wi
acts by a composition of a rotation and a (possibly trivial) reflection.

By hypothesis, π(h) preserves orientation, thus on each irreducible Wi, h is acting
by rotation alone. However, this means that π(hah−1)|Wi

= π(a)|Wi
as π(a) acts

by rotation as well, and therefore commutes with π(h)|Wi
. Hence π(hah−1) = π(a)

for all a ∈ A, and by the faithfulness hypotheses, h = 1. Thus the decorated
permutation homomorphism H −→ Zq

2 ⋊ (Sp × Sq) is injective.

We conclude this section with an analogue of Corollary 4.5 adapted to real
representations.

Corollary 4.7. Let A be an abelian group and let G be a semi-direct product
of A with Sm where Sm acts faithfully on A by automorphisms for some m not
equal to 2 or 4. Compose the decorated permutation map Sm −→ Zq

2⋊ (Sp×Sq) as
constructed in Theorem 4.6 with the quotient Zq

2⋊(Sp×Sq) −→ Sp×Sq. This map
Sm −→ Sp×Sq is injective onto at least one of the factors Sp or Sq. In particular,
this means that either p or q is at least as large as m so mdimR(G) ≥ m.

Proof. As Sm acts faithfully on A, by Theorem 4.6, we have the map Sm −→ Zq
2⋊
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(Sp × Sq) is injective. Assume there is some non-trivial kernel to Sm −→ Sp × Sq.
By injectivity of the map Sm −→ Zq

2 ⋊ (Sp × Sq), this means that the image of
Sm non-trivially intersects Zq

2, and thus q ̸= 0. By injectivity, this means some
subgroup of Zq

2 sits normally inside Sm. The only values of m for which there is a
non-trivial normal 2-group in Sm are m = 2 and m = 4.

For m = 2, S2 is itself a 2-group and hence the kernel is all of S2, therefore
the induced permutation map S2 −→ Sp × Sq is trivial. For m = 4, S4 has a
normal Klein 4-group.

Thus, if m ̸= 2, 4, Sm does not possess a non-trivial normal 2-group, and therefore
the map Sm −→ Sp × Sq is injective. In this instance we claim that at least one
factor composition, Sm −→ Sp or Sm −→ Sq, is injective.

If both Sm −→ Sp and Sm −→ Sq have non-trivial kernels, we may denote them by
K1 and K2 separately. Note that K1 ∩K2 must be trivial, because if k ∈ K1 ∩K2,
then the image of k under Sm −→ Sp × Sq is trivial. By injectivity of this map,
k = 1. Thus Sm possesses two distinct disjoint non-trivial normal subgroups. In
particular, neither K1 nor K2 may equal Sm, thus these kernels are proper.

The only instance in which Sm has two non-trivial proper normal subgroups is
when m = 4, but in this case, those normal subgroups are nested as the Klein
4-group sitting inside A4. However, by hypothesis m ̸= 4. Therefore, either
Sm −→ Sp or Sm −→ Sq must have a trivial kernel, thus Sm embeds in either Sp

or Sq.

5 Examples and Applications

5.1 Minimal Faithful Representations of G2 and G3

In this section, we employ Theorems 3.10, 4.2, 4.4, and 4.6 to calculate the min-
imal real and complex dimensions of faithful representations of G2 and G3. We
use Propositions 2.6, 3.9, and 3.11 which express G2 and G3 as split extensions by
abelian groups of complementary permutation groups to our advantage in these
calculations. More specifically, given a faithful representation of either G2 or G3,
we are able to say that the permutation maps on irreducible pieces of their nor-
mal abelian subgroups as defined in Theorems 4.4 and 4.6 are typically injective.
The fact that the complementary subgroups are permutation groups with few to
no non-trivial normal subgroups allows for tractable case-by-case analysis. These
statements are made precise in Theorem 5.1 and Theorem 5.2.
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We close this section with a peculiar example that illustrates the subtlety between
the relations amongst minimal real and complex dimensions of finite groups. One
may wager that because the complex representations of a finite group determine
the real ones, a minimal faithful real representation is determined by a minimal
faithful complex one. In Theorem 5.3, we construct an example where a minimal
faithful real representation is not induced by a minimal faithful complex one.

To begin, we focus our attention on the less complicated Rubik’s cube group G2

and determine its minimal faithful dimensions.

Theorem 5.1. We have that mdimC(G2) = 8 and mdimR(G2) = 16 respectively.
A minimal faithful real representation of G2 may be obtained by a restriction of
scalars of a complex faithful representation.

Proof. We begin by constructing a faithful 8-dimensional complex representation
of G2. Let us first introduce some notation. Let ω3 := exp(2πi/3). We obtain
a faithful representation of Z8

3,0 by taking the 8-tuple ([m1], [m2], . . . , [m8]) ∈ Z8
3,0

to the diagonal 8 × 8-matrix whose entries are (ωm1
3 , ωm2

3 . . . , ωm8
3 ). Denote this

representation of Z8
3,0 by (π,C8). Because the standard permutation representation

(ρ,C8) of S8 on C8 normalizes the representation of Z8
3,0, ρ is compatible with π in

the following sense. For each h ∈ S8 and any a ∈ Z8
3,0, we have that π (hah−1) =

ρ(h)π(a)ρ (h−1). Thus we may extend π to a representation of G2 by declaring
π(ah) := π(a)ρ(h). This is a well-defined function by the fact that S8 ∩ Z8

3,0 = 1
in G2. It is a homomorphism due to the compatibility relation as seen in the
following equations.

π ((ah)(a′h′)) := π
(
a(ha′h−1)

)
ρ(hh′) = π(a)π(ha′h−1)ρ(hh′)

= π(a)
[
ρ(h)π(a′)ρ(h−1)

]
ρ(hh′) = π(a)ρ(h)π(a′)ρ(h′) = π(ah)π(a′h′)

That this representation is faithful is readily seen by the faithfulness of both π
and ρ which take images in complementary subgroups of the general linear group.

By Theorem 4.4, the degree of any faithful representation of G2 is at least 8
as S8 acts on Z8

3,0 faithfully. Thus mdimC(G2) = 8.

We now prove mdimR(G2) = 16. One can readily obtain a faithful real 16-
dimensional representation of G2 by restricting scalars of the complex representa-
tion constructed above.

We prove this dimension is minimal. G2 is isomorphic to Z8
3,0 ⋊ S8 where S8

acts on Z8
3,0 by permutations. Let (π, V ) be a real faithful representation of G2.
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Let S8 −→ Sp and S8 −→ Sq be the permutation representations as constructed
in Theorem 4.6. By Corollary 4.7, we know that S8 injects into either Sp or Sq.

If S8 injects into Sq, then there are at least eight 2-dimensional Z8
3,0-irreducible

pieces, thus dimR V ≥ 16. If S8 fails to inject into Sq, then S8 injects into Sp, and
thus we have at least eight 1-dimensional Z8

3,0-irreducible pieces. Additionally, by
Theorem 4.2, we have at least seven 2-dimensional Z8

3,0-irreducible pieces due to
the invariant factor decomposition of Z8

3,0 ≃ Z7
3. Thus p ≥ 8 and q ≥ 7, so our

representation is at least 8 + 2 · 7 = 22-dimensional.

The lower of these two bounds is 16. Therefore, any faithful real representation of
G2 is at least 16-dimensional.

We now state and prove an analogous theorem concerning the 3×3 cube group
G3.

Theorem 5.2. We have that mdimC(G3) = 20 and mdimR(G3) = 28. A minimal
faithful real representation may be obtained from a minimal complex one by adding
an appropriate conjugate piece.

Proof. We may construct a faithful complex representation of G3 in a manner
similar to that in the proof of Theorem 5.1. We begin by constructing a faithful
representation of Z12

2,0 by taking the 12-tuple ([m1], [m2], . . . , [m12]) ∈ Z12
2,0 to the

diagonal 12×12 matrix whose entries are ((−1)m1 , (−1)m2 . . . , (−1)m12). Similarly,
we take an element ([m1], [m2], . . . , [m8]) ∈ Z8

3,0 to the diagonal 8×8 matrix whose
entries are (ωm1

3 , ωm2
3 . . . , ωm8

3 ). We obtain a faithful representation of Z12
2,0 ⊕ Z8

3,0

by taking the sum of these two representations. Denote this representation by
(π,C20).

Consider the standard permutation representation (ρ,C20) of S12 × S8 and re-
strict it to the subgroup P of all pairs of permutations (σ, ρ) ∈ S12 × S8 with
the same sign, as defined in Section 3.3. In a similar fashion to Theorem 5.1,
we note that because this permutation representation normalizes the representa-
tion π of Z12

2,0 ⊕ Z8
3,0, we may extend π to a representation of G3 by declaring

π(ah) := π(a)ρ(h) to obtain a faithful 20-dimensional complex representation of
G3.

By Theorem 4.4, the degree of any faithful representation of G3 is at least the
minimal permutation degree of P . As P contains a copy of A8 ×A12, this permu-
tation degree is at least as large as µ(A8 × A12) = µ(A8) + µ(A12) = 20, as the
minimal permutation degree of the product is additive for the alternating groups
[4]. Thus, we have the minimal dimension of a faithful complex representation of
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G3 is 20.

We now prove the minimal faithful real dimension of G3 is 28. One can ob-
tain such a real 28-dimensional representation from a minimal complex one. Let
(π,C20) denote the complex minimal faithful representation constructed above.
Our representation splits into two pieces C20 = C12 ⊕ C8, the first piece corre-
sponding to the edges and the second piece corresponding to the corners. The
first piece C12 is a reducible real representation whereas the second piece C8 is
irreducible and non-real. The first piece splits into pieces of dimension 1 and 11,
the former of which is generated by all vectors in C20 whose first 12 entries are
equal and the remaining are zero. This reducibility comes from the center of the
group G3 which is isomorphic to Z2.

We may obtain a real representation from C20 by real-ifying and adding a complex
conjugate piece to yield C12 ⊕ (C8 ⊕ C8). That this representation is faithful fol-
lows immediately from faithfulness of the original complex representation. Hence
mdimR(G3) ≤ 12 + 2 · 8 = 28.

We now prove this dimension is minimal. G3 is isomorphic to (Z12
2,0⊕Z8

3,0)⋊P where
P acts on (Z12

2,0⊕Z8
3,0) by permutations. Let (π, V ) be a real faithful representation

of G3. Let P −→ Zq
2 ⋊ (Sp × Sq) be the decorated permutation homomorphism

afforded by Theorem 4.6. As P contains no non-trivial normal 2-groups, the deco-
rated permutation homomorphism is injective. We claim the homomorphism onto
the quotient Sp × Sq is injective. As P is isomorphic to (A12 × A8) ⋊ Z2 where
Z2 acts on each factor by conjugation by an odd permutation, the only normal
subgroups P contains are isomorphic to 1, A8, A12, A8 × A12, and P itself. None
of these groups are isomorphic to a subgroup of Zq

2 for q ̸= 0. Hence the kernel of
the map P −→ Sp × Sq must be trivial.

We now consider the projection maps P −→ Sp and P −→ Sq. By injectivity
of P −→ Sp × Sq, the kernels of these maps must intersect trivially. Denote these
kernels by Kp, Kq ⊂ P respectively. In the table in (6) below we list the possible
pairs of kernels (Kp, Kq), the corresponding minimum number of 1 and 2 dimen-
sional irreducible pieces afforded by P/Kp −→ Sp and P/Kq −→ Sq, and a lower
bound of the real dimension of V , p+ 2q.
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Kp Kq p q p+ 2q
1 1 20 20 60

1× A8 A12 × 1 12 8 28
A12 × 1 1× A8 8 12 32

1 A8 × A12 20 2 24
A8 × A12 1 2 20 42

1 P 20 0 20
P 1 0 20 40

(6)

For example, in line 3 of (6), the kernel of the map P −→ Sp is A12 × 1 and the
kernel of the map P −→ Sq is 1×A8. Thus, we have P/(A12×1) ≃ S8 embedding
in Sp and P/(1 × A8) ≃ S12 embedding in Sq. Therefore p ≥ 8 and q ≥ 12, so
dimR V ≥ 8 + 2 · 12 = 32.

The only cases we must further inspect are when Kp = 1 and Kq = A8 × A12

and when Kp = 1 and Kq = P . In these cases, we would have at least twenty
1-dimensional Z12

2,0 ⊕ Z8
3,0-irreducible pieces. The invariant factor decomposition

of this group is Z4
2 ⊗ Z7

6. By Theorem 4.2, this means there are at least seven
2-dimensional Z12

2,0 ⊕ Z8
3,0-irreducible pieces. Thus in these cases, p+ 2q is at least

20 + 2 · 14 = 48. Consequently, every faithful representation of G3 is at least 28
real-dimensional, so mdimR(G3) = 28.

5.2 An Exceptional Example

The relationship between the minimal real and complex dimensions of a finite
group remains unclear. Certainly for any finite group G, mdimC(G) ≤ mdimR(G).
Furthermore, for any minimal faithful complex representation (ρ, V ), we may take
its realification as defined in Section 4.1 to obtain a faithful real representation.
There are only finitely many minimal faithful complex representations up to iso-
morphism, so we take the one whose realification is of smallest real dimension to
obtain a crude upper bound on mdimR(G). That is to say, mdimR(G) is bounded
above by the smallest dimension over all realifications of minimal complex faithful
representations of G.

Given the results of Theorem 5.1 and Theorem 5.2, one might conjecture that
a minimal real representation is always obtainable from a minimal complex rep-
resentation in the fashion described in the above paragraph and in the proof of
Theorem 5.2. However, this does not always hold true as the following exam-
ple illustrates. This example is motivated by Corollary 4.7 which states that
so long as m is neither 2 or 4, then the decorated permutation homomorphism
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Sm −→ Zq
2 ⋊ (Sp × Sq) descends to an injective permutation homomorphism on

the quotient Sm −→ Sp × Sq.

Theorem 5.3. Let G = Z4
3,0⋊S4 where S4 acts by permutations on Z4

3,0. We have
that mdimC(G) = 4 and mdimR(G) = 6. Every such minimal complex representa-
tion of G is irreducible and non-real, thus no minimal real representation is from
a minimal complex representation.

Proof. Let G = Z4
3,0 ⋊ S4. That G possesses a 4-dimensional complex faithful

representation is straightforward and follows from the arguments in the beginning
of Theorem 5.1. If we choose any faithful 4-dimensional complex representation
(π, V ) of G, we claim it must be irreducible. Note that G has a minimal non-trivial
normal subgroup Z4

3,0. That Z4
3,0 is minimal amongst non-trivial normal subgroups

follows from an analysis similar to Propositions 2.7, 2.8 and 2.9 and is omitted for
brevity.

If V is reducible and breaks into two smaller pieces, say V = V1⊕V2, then we have
new representations (π, V1) and (π, V2) which by minimality of V , must both have
non-trivial kernel. However, by minimality of Z4

3,0 amongst normal subgroups in
G, this means Z4

3,0 is in both kernels, hence π was not faithful to begin with. Thus
V is irreducible. That π is non-real may be readily seen by restricting our repre-
sentation π to Z4

3,0 which has many characters with non-trivial imaginary parts.

We now prove there is a 6-dimensional real faithful representation of G. Because
Z4

3,0 ≃ Z3
3, by Theorem 4.2, the real dimension of a minimal faithful representa-

tion Z4
3,0 is 6. Let us choose such a representation (π,R6). R6 splits into three

2-dimensional irreducible pieces which we denote by V1, V2, and V3. Without loss
of generality, for each 1 ≤ i ≤ 3, we may choose Vi to be generated by the (2i−1)-
th and 2i-th basis vectors, so for example V2 is generated by e3 and e4. We also
choose orientations oi for each Vi by declaring {e2i−1, e2i} to be an oriented basis.

We now construct a faithful 6-dimensional representation of S4 using the excep-
tional isomorphism between S4 and Z3

2,0⋊S3 where S3 acts on Z3
2,0 by permutations.

In what follows, we identify S4 with Z3
2,0 ⋊ S3.

For 1 ≤ i ≤ 3, let us define orientation-reversing involutions ϵi of R6 that in-
terchange the (2i− 1)-th and 2i-th basis vectors, and leave all other basis vectors
fixed. For example ϵ2(e3) = e4, ϵ2(e4) = e3, and ϵ2 fixes all vectors in V1 and
V3. We obtain a faithful representation of Z3

2,0 into R6 by sending each element
([m1,m2,m3]) ∈ Z3

2,0 to ϵm1
1 ⊕ ϵm2

2 ⊕ ϵm3
3 . This defines a faithful representation of

Z3
2,0 into R6 which we denote by (ρ,R6).
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Similarly, for each permutation σ ∈ S3, we associate an orientation preserving
automorphism of R6 that takes e2i−1 to e2σ(i)−1 and e2i to e2σ(i) for each 1 ≤ i ≤ 3.
For example, (132) ∈ S3 is the orientation preserving automorphism whose action
is defined below and extended to all of R6 by linearity.

e1 → e5 e2 → e6
e3 → e1 e4 → e2
e5 → e3 e6 → e4

The above map sends V1 to V3, V2 to V1, and V3 to V2. This defines a representation
of S3 into R6 which we denote by (τ,R6).

The representations τ and ρ are compatible in the sense that for each σ ∈ S3,
τ(σ) normalizes the image of ρ. Specifically, for each σ ∈ S3 and a ∈ Z3

2,0, we have
ρ(σaσ−1) = τ(σ)ρ(a)τ(σ−1) and ρ and σ have complementary images. Hence, we
may extend (ρ,R6) to a representation of Z3

2,0 ⋊ S3 on R6 which we denote by ρ′.

To complete the construction, we choose the typical faithful 6-dimensional rep-
resentation (π,R6) of Z3

3 into R6 where each i-th factor of Z3
3 acts on Vi by a

rotation of 2π/3-radians. The representation (π,R6) is normalized by ρ′ and has
image complementary to ρ′, and thus extends to a faithful representation of G
of real dimension 6. This is minimal as Z3

3 requires at least three 2-dimensional
irreducible pieces.

What is remarkable about this example is that the minimal real representa-
tion does not come from ‘real-ifying’ any minimal complex representation as in
the proof of Theorem 5.2. Because every minimal faithful representation of G
is non-real, adding its conjugate piece would produce a 4 + 4 = 8-dimensional
real faithful representation. However, we managed to construct a 6-dimensional
one. From Theorems 5.1 and 5.2, where the minimal real dimension is equal to
the dimension of the realification of a minimal complex representation, we see
that the upper bound of mdimR(G) by the smallest dimension of the realification
over all minimal faithful complex representations cannot be improved in general.
Regardless, Theorem 5.3 illustrates that this bound is not optimal in all cases.
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